高考排列组合常见题型及解题策略(DOC 14页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考排列组合常见题型及解题策略(DOC 14页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考排列组合常见题型及解题策略DOC 14页 高考 排列组合 常见 题型 解题 策略 DOC 14 下载 _各科综合_高中
- 资源描述:
-
1、可重复的排列求幂法相邻问题捆绑法相离问题插空法元素分析法(位置分析法)多排问题单排法定序问题缩倍法(等几率法)标号排位问题(不配对问题)不同元素的分配问题(先分堆再分配)相同元素的分配问题隔板法:多面手问题( 分类法-选定标准)走楼梯问题 (分类法与插空法相结合)排数问题(注意数字“0”)高考资源网 染色问题“至多”“至少”问题用间接法或分类:十三 几何中的排列组合问题:排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.
2、一可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)(2) (3)【例2】 把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车
3、间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A、 B、 C、 D、【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有种不同的结果。所以选A二相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.高考资源网 【例1】五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有 【解析】:把视为一人,且固定在的右边,则本题相当于4人的全排列
4、,种【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有, 种高考资源网 其中男生甲站两端的有,符合条件的排法故共有288 三相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为种,再用甲乙去
5、插6个空位有种,不同的排法种数是种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【解析】:不同排法的种数为3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 【解析】:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有20种不同
6、排法。【例5】某市春节晚会原定10个节目,导演最后决定添加3个与“抗冰救灾”有关的节目,但是赈灾节目不排在第一个也不排在最后一个,并且已经排好的10个节目的相对顺序不变,则该晚会的节目单的编排总数为 种.【解析】: 【例6】.马路上有编号为1,2,3,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法,所以满足条件的关灯方案有10种.说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决.【例7】 3个人坐在
7、一排8个椅子上,若每个人左右两边都有空位,则坐法的种数有多少种?【解析】: 解法1、先将3个人(各带一把椅子)进行全排列有A,*,在四个空中分别放一把椅子,还剩一把椅子再去插空有A种,所以每个人左右两边都空位的排法有=24种.解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个空,*再让3个人每人带一把椅子去插空,于是有A=24种.【例8】 停车场划出一排12个停车位置,今有8辆车需要停放.要求空车位置连在一起,不同的停车方法有多少种?【解析】:先排好8辆车有A种方法,要求空车位置连在一起,则在每2辆之间及其两端的9个空档中任选一个,将空车位置插入有C种方法,所以共有CA种方法. 注:题中*
8、表示元素,表示空.四元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。【例1】 2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( ) 高考资源网 A. 36种 B. 12种 C. 18种 D. 48种【解析】: 方法一: 从后两项工作出发,采取位置分析法。 方法二:分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有选法,共有选法36种,选A. 【例2】 1名老师和4名获奖同学排成一
9、排照相留念,若老师不站两端则有不同的排法有多少种?【解析】: 老师在中间三个位置上选一个有种,4名同学在其余4个位置上有种方法;所以共有种。.【例3】 有七名学生站成一排,某甲不排在首位也不排在末位的排法有多少种?【解析】 法一: 法二: 法三:五多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。高考资源网 【例1】(1) 6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )A、36种 B、120种 C、720种 D、1440种(2)把15人分成前后三排,每排5人,不同的排法种数为(A)(B) (C)(D) (3)8个不同的元素排成前后两排,每排4个元素,其中某
10、2个元素要排在前排,某1个元素排在后排,有多少种不同排法?【解析】 :(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共种,选.高考资源网 (2)答案:C(3)看成一排,某2个元素在前半段四个位置中选排2个,有种,某1个元素排在后半段的四个位置中选一个有种,其余5个元素任排5个位置上有种,故共有种排法.五定序问题缩倍法(等几率法):在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.【例1】.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是( )高考资源网 【解析】 :在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一
11、半,即种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有多少种不同的插法?高考资源网 【解析】 :法一: 法二:【例3】将A、B、C、D、E、F这6个字母排成一排,若A、B、C必须按A在前,B居中,C在后的原则(A、B、C允许不相邻),有多少种不同的排法? 【解析】 :法一: 法二: 六标号排位问题(不配对问题) 把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.【例1】 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A、6种 B、9种 C、11种
12、D、23种高考资源网 【解析】 :先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有331=9种填法,选.【例2】 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( ) A 10种 B 20种 C 30种 D 60种 答案:B【例3】:同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则4张贺年卡不同的分配方式共有( ) (A)6种(B)9种(C)11种(D)23种 【解析】:设四个人分别为甲、乙、丙、丁,各自
13、写的贺年卡分别为a、b、c、d。 第一步,甲取其中一张,有3种等同的方式; 第二步,假设甲取b,则乙的取法可分两类:(1)乙取a,则接下来丙、丁取法都是唯一的,(2)乙取c或d(2种方式),不管哪一种情况,接下来丙、丁的取法也都是唯一的。根据加法原理和乘法原理,一共有种分配方式。 故选(B)【例4】:五个人排成一列,重新站队时,各人都不站在原来的位置上,那么不同的站队方式共有( )高考资源网 (A)60种(B)44种(C)36种(D)24种 答案:B 六不同元素的分配问题(先分堆再分配):注意平均分堆的算法【例1】 有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?高考资源网 (1
展开阅读全文