2020年高考数学真题汇编13-概率-理(-解析版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年高考数学真题汇编13-概率-理(-解析版).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年高 数学 汇编 13 概率 解析 下载 _各科综合_高中
- 资源描述:
-
1、2020高考真题分类汇编:概率1.【2020高考真题辽宁理10】在长为12cm的线段AB上任取一点C.现作一矩形,领边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为(A) (B) (C) (D) 【答案】C【解析】设线段AC的长为cm,则线段CB的长为()cm,那么矩形的面积为cm2,由,解得。又,所以该矩形面积小于32cm2的概率为,故选C【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。2.【2020高考真题湖北理8】如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自
2、阴影部分的概率是A BC D【答案】A第8题图【解析】令,扇形OAB为对称图形,ACBD围成面积为,围成OC为,作对称轴OD,则过C点。即为以OA为直径的半圆面积减去三角形OAC的面积,。在扇形OAD中为扇形面积减去三角形OAC面积和,扇形OAB面积,选A.3.【2020高考真题广东理7】从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是A. B. C. D.【答案】D 【解析】法一:对于符合条件“个位数与十位数之和为奇数的两位数”分成两种类型:一是十位数是奇数,个位数是偶数,共有个,其中个位数为0的有10,30,50,70,90共5个;二是十位数是偶数,个位数是奇数,共有,所
3、以故选D法二:设个位数与十位数分别为,则,1,2,3,4,5,6,7,8,9,所以分别为一奇一偶,第一类为奇数,为偶数共有个数;第二类为偶数,为奇数共有个数。两类共有45个数,其中个位是0,十位数是奇数的两位有10,30,50,70,90这5个数,所以其中个位数是0的概率是,选D。4.【2020高考真题福建理6】如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为A. B. C. D. 【答案】. 【解析】根据定积分的几何意义可知阴影部分的面积,而正方形的面积为,所以点恰好取自阴影部分的概率为故选5.【2020高考真题北京理2】设不等式组,表示平面区域为D,在区域D
4、内随机取一个点,则此点到坐标原点的距离大于2的概率是(A) (B) (C) (D) 【答案】D【解析】题目中表示的区域如图正方形所示,而动点D可以存在的位置为正方形面积减去四分之一圆的面积部分,因此,故选D。 6.【2020高考真题上海理11】三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)。【答案】【解析】三位同学从三个项目选其中两个项目有中,若有且仅有两人选择的项目完成相同,则有,所以有且仅有两人选择的项目完成相同的概率为。7.【2020高考真题新课标理15】某个部件由三个元件按下图方式连接而成,元件1或元件
5、2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 【答案】【解析】三个电子元件的使用寿命均服从正态分布得:三个电子元件的使用寿命超过1000小时的概率为超过1000小时时元件1或元件2正常工作的概率 那么该部件的使用寿命超过1000小时的概率为.8.【2020高考江苏6】(5分)现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 【答案】。【考点】等比数列,概率。【解析】以1为首项,为公比的等比数列的10个数为1,
6、3,9,-27,其中有5个负数,1个正数1计6个数小于8, 从这10个数中随机抽取一个数,它小于8的概率是。9.【2020高考真题四川理17】(本小题满分12分) 某居民小区有两个相互独立的安全防范系统(简称系统)和,系统和在任意时刻发生故障的概率分别为和。()若在任意时刻至少有一个系统不发生故障的概率为,求的值;()设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望。【答案】本题主要考查独立事件的概率公式、离散型随机变量的分布列、数学期望等基础知识,考查实际问题的数学建模能力,数据的分析处理能力和基本运算能力.【解析】10【2020高考真题湖北理】(本小题满分1
7、2分)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量X工期延误天数02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9. 求:()工期延误天数的均值与方差; ()在降水量X至少是的条件下,工期延误不超过6天的概率. 【答案】()由已知条件和概率的加法公式有:,.所以的分布列为:026100.30.40.20.1 于是,;. 故工期延误天数的均值为3,方差为. ()由概率的加法公式,又. 由条件概率,得.故在降水量X至少是mm的条件下,工期延误不超过6天的概率是. 11.【2020高考江苏25】(10分)
8、设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时, (1)求概率; (2)求的分布列,并求其数学期望【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱, 共有对相交棱。 。 (2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对, ,。 随机变量的分布列是:01 其数学期望。 【考点】概率分布、数学期望等基础知识。【解析】(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率。 (2)求出两条棱平行且距离为的共有6对,即可求出,从而求出(两条棱平行且距离为1和两条棱异
9、面),因此得到随机变量的分布列,求出其数学期望。 12.【2020高考真题广东理17】(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:40,5050,6060,7070,8080,9090,100(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求得数学期望【答案】本题是在概率与统计的交汇处命题,考查了用样本估计总体等统计知识以及离散型随机变量的分布列及期望,考查学生应用数学知识解决实际问题的能力,难度中等。【解析】13.【2020高考真题全国卷理19】(本小题满分12分)(注意:
10、在试题卷上作答无效)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.()求开始第4次发球时,甲、乙的比分为1比2的概率;()表示开始第4次发球时乙的得分,求的期望.【答案】14.【2020高考真题浙江理19】(本小题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和()
展开阅读全文