2019年高考数学考点解析及考点分布表[整理版]精品文档14页.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019年高考数学考点解析及考点分布表[整理版]精品文档14页.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整理版 2019 年高 数学 考点 解析 分布 整理 精品 文档 14 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、2018年高考数学(理科)考点解析要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等
2、,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。 一、考核目标与要求“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。孟子中的“先生何为出此言也?”;论语中的“有酒食,先生馔”;国策中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实国策中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近
3、。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于礼记?曲礼,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。数学科高考注重考查中学数学的基础知识、基本技能、基本思想方法(所谓三基),考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识、创新意识(五种能力、两种意识)。具体考试内容根据教育部颁布的普通高中数学课程标准(实验)、教育部考试中心颁布的普通高等学校招生全国统一考试大纲(理科课程标准实验)确定。单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
4、让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 关于考试内容的知识要求和能力要求的说明如下:1知识要求知识是指课程标准所规定的必修课程、选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能。各部分知识的整体要求及其定位参照课程标准相应模块的有关说明对知识的要求由低到
5、高分为了解、理解、掌握三个层次(分别用A、B、C表示),且高一级的层次要求包含低一级的层次要求(1)了解(A):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别、认识它。“了解”层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。(2)理解(B):要求对所列知识内容有较深刻的理性的认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判断、讨论,具备利用所学知识解决简单问题的能力。“理解”层次所涉及的主要行为动词有:描述,说明,表达、表示,
6、推测、想象,比较、判别、判断,初步应用等。(3)掌握(C):要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。“掌握”层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。2能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力及应用意识和创新意识。(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。(2)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中
7、,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断。(3)推理论证能力:会根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性的初步的推理能力推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法一般运用合情推理进行猜想,再运用演绎推理进行证明。(4)运算求解能力:会根据法则、公式进行正确的运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信
8、息,并作出判断、解决给定的实际问题。数据处理能力主要依据统计中的方法对数据整理、分析,并解决给定实际问题。(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行
9、独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题3个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。就考试而言,要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。4考查要求数学学科的系统性和严密性决定了数学知识之间内在联系的深刻性,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构(1)对数学基础知识的考查,既要全面又要
10、突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体。考查应注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面。从学科的整体高度和思维价值的高度设计问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度。(2)对数学思想方法的考查,是对数学知识在更高层次上的抽象和概括的考查,考查时必然要与数学知识相结合,从数学学科整体意义和思想含义上立意,注重通性通法,淡化特殊技巧,从而反映考生对数学思想方法的掌握程度数学思想方法主要包括:函数与方程、数形结合、分类与整合、化归与转化、特殊与一般、有限与无限,或然与必然等,其基本含义如下: 函数与方程的思想:函数思
11、想就是利用运动变化的观点分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来并加以研究,从而使问题获解。方程思想是从问题的数量关系入手,运用数学语言将问题中的条件转化为方程问题,然后通过解方程(组)使问题获解。函数与方程的思想既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。 数形结合的思想:数形结合的思想就是充分运用“数”的严谨和“形”的直观,将抽象的数学语言与直观的图形语言结合起来,使抽象思维和形象思维结合,通过图形的描述、代数的论证来研究和解决数学问题的一种数学思想方法。数形结合思想是数学的规律性与灵活性的有机结合
12、,通过“以形助数,以数辅形”,变抽象思维为形象思维,使复杂问题简单化,抽象问题具体化,有助于把握数学问题的本质,有利于达到优化解题的目的。 分类与整合的思想:分类与整合就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。分类与整合就是“化整为零,各个击破,再积零为整”的数学思想。 化归与转化的思想:化归与转化的思想是在研究和解决数学问题时采用某种方式,借助某些数学知识,将问题进行等价转化,使抽象问题具体化,复杂问题简单化、未知问题已知化等,进而达到解决问题的数学思想。 特殊与一般的思想:特殊与一般的思
展开阅读全文