(完整版)高考线性规划必考题型(非常全).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)高考线性规划必考题型(非常全).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 高考 线性规划 必考 题型 非常 下载 _各科综合_高中
- 资源描述:
-
1、线性规划专题一、命题规律讲解1、 求线性(非线性)目标函数最值题2、 求可行域的面积题3、 求目标函数中参数取值范围题4、 求约束条件中参数取值范围题5、 利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即简单线性规划的最优解。例1 已知,求的最大值和最小值例2已知满足,求z=的最大值和最小值二、非线性约
2、束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即最优解。例3 已知满足,求的最大值和最小值例4 求函数的最大值和最小值。三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标即可行解,
3、在可行解中的使得目标函数取得最大值和最小值的点的坐标即最优解。例5 已知实数满足不等式组,求的最小值。例6 实数满足不等式组,求的最小值四、非线性约束条件下非线性函数的最值问题在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标即最优解。例7 已知满足,求的最大值和最小值1. “截距”型考题方法:求交点求最值在线性约束条件下,求形如的线性目标函数的最值问题,通常转化为求直线在轴上的截距的取值. 结合
4、图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1.【广东卷 理5】已知变量满足约束条件,则的最大值为( ) 2. (辽宁卷 理8)设变量满足,则的最大值为A20 B35 C45 D553.(全国大纲卷 理) 若满足约束条件,则的最小值为 。4.【陕西卷 理14】 设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 5.【江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨1.2万元0.55万元韭菜6吨0
5、.9万元0.3万元为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A50,0 B30,20 C20,30 D0,506. (四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A、1800元 B、2400元 C、2800元 D、3100元2 .
展开阅读全文