(完整版)高考椭圆几种题型.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)高考椭圆几种题型.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 高考 椭圆 题型 下载 _各科综合_高中
- 资源描述:
-
1、高考椭圆几种题型 引言 在高考之中占有比较重要的地位,并且占的分数也多。分析历年的高考试题,在选择题,填空题,大题都有椭圆的题。所以我们对知识必须系统的掌握。对各种题型,基本的解题方法也要有一定的了解。二 椭圆的知识(一)、定义1 平面内与与定点F1、F2的距离之和等于定长2a(2a|F1F2|)的点的轨迹叫做椭圆,其中F1、F2称为椭圆的焦点,|F1F2|称为焦距。其复数形式的方程为|Z-Z1|+| Z-Z2|=2a(2a|Z1-Z2|)2一动点到一个定点F的距离和它到一条直线的距离之比是一个大于0小于1的常数,则这个动点的轨迹叫椭圆,其中F称为椭圆的焦点,l称为椭圆的准线。(二)、方程1中
2、心在原点,焦点在x轴上:2中心在原点,焦点在y轴上:3 参数方程:4 一般方程:(三)、性质1 顶点:或2 对称性:关于,轴均对称,关于原点中心对称。3 离心率:4 准线5 焦半径:设为上一点,F1、F2为左、右焦点,则,;设为上一点,F1、F2为下、上焦点,则,。三 椭圆题型(一)椭圆定义 1.椭圆定义的应用例1 椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程分析:题目没有指出焦点的位置,要考虑两种位置解:(1)当为长轴端点时,椭圆的标准方程为:;(2)当为短轴端点时,椭圆的标准方程为:;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要
3、考虑两种情况例2 已知椭圆的离心率,求的值分析:分两种情况进行讨论解:当椭圆的焦点在轴上时,得由,得当椭圆的焦点在轴上时,得由,得,即满足条件的或说明:本题易出现漏解排除错误的办法是:因为与9的大小关系不定,所以椭圆的焦点可能在轴上,也可能在轴上故必须进行讨论例3 已知方程表示椭圆,求的取值范围解:由得,且满足条件的的取值范围是,且说明:本题易出现如下错解:由得,故的取值范围是出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆例4 已知表示焦点在轴上的椭圆,求的取值范围分析:依据已知条件确定的三角函数的大小关系再根据三角函数的单调性,求出的取值范围解:方程可化为因为焦点在轴上,所
4、以因此且从而说明:(1)由椭圆的标准方程知,这是容易忽视的地方(2)由焦点在轴上,知, (3)求的取值范围时,应注意题目中的条件例5 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满足的关系式解:如图所示,设动圆和定圆内切于点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法 2.关于线段长最值的问题一般两个方法:一种是借助图形,由几何图形中量的关系求最值,二是建立函数
5、关系求最值,或用均值不等式来求最值。例(1):点P为为椭圆上一点,F1、F2是椭圆的两个焦点,试求:取得最值时的点坐标。解:(1)设,则。由椭圆第二定义知:。当时, 取最大值,此时点P(0,b);当时,取最小值b2,此时点P(a,0)。(二).焦半径及焦三角的应用例1 已知椭圆方程,长轴端点为,焦点为,是椭圆上一点,求:的面积(用、表示)分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限由余弦定理知: 由椭圆定义知: ,则得 故 例2.已知椭圆内有一点,、分别是椭圆的左、右焦点,点是椭圆上一点求的最大值、最小值及对
展开阅读全文