书签 分享 收藏 举报 版权申诉 / 21
上传文档赚钱

类型高考数学数列大题专题训练汇编(DOC 21页).docx

  • 上传人(卖家):2023DOC
  • 文档编号:5698984
  • 上传时间:2023-05-04
  • 格式:DOCX
  • 页数:21
  • 大小:736.27KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高考数学数列大题专题训练汇编(DOC 21页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高考数学数列大题专题训练汇编DOC 21页 高考 数学 数列 专题 训练 汇编 DOC 21 下载 _各科综合_高中
    资源描述:

    1、学习-好资料高考数学数列大题专题训练命题:郭治击 审题:钟世美1.在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作,再令,n1.()求数列的通项公式;()设,求数列的前n项和.2.若数列满足,数列为数列,记=()写出一个满足,且0的数列;()若,n=2000,证明:E数列是递增数列的充要条件是=2011;()对任意给定的整数n(n2),是否存在首项为0的E数列,使得=0?如果存在,写一个满足条件的E数列;如果不存在,说明理由。3.已知等比数列an的公比q=3,前3项和S3=。(I)求数列an的通项公式;(II)若函数在处取得最大值,且最大值为a3,求

    2、函数f(x)的解析式。4.设b0,数列满足a1=b,.(1)求数列的通项公式;(2)证明:对于一切正整数n,5.已知数列的前项和为,且满足:, N*,()求数列的通项公式;()若存在 N*,使得,成等差数列,是判断:对于任意的N*,且,是否成等差数列,并证明你的结论6. 已知函数() =,g ()=+。 ()求函数h ()=()-g ()的零点个数,并说明理由; ()设数列满足,证明:存在常数M,使得对于任意的,都有.7.已知两个等比数列,满足(1)若,求数列的通项公式;(2)若数列唯一,求的值8、已知等差数列an满足a2=0,a6+a8=-10(I)求数列an的通项公式; (II)求数列的前

    3、n项和9.设数列满足且()求的通项公式 ()设10.等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列第一列第二列第三列第一行3210第二行6414第三行9818()求数列的通项公式;()若数列满足:,求数列的前n项和11.已知数列和的通项公式分别为,(),将集合中的元素从小到大依次排列,构成数列。 求 求证:在数列中、但不在数列中的项恰为 求数列的通项公式。12.(1)写出并判断是否为等比数列。若是,给出证明;若不是,说明理由;(II)设,求数列的前n项和13.已知数列与满足:, ,且()求的值 ()设,证明:是等比数列(III)设证明:14.等比数列的各项均

    4、为正数,且(1)求数列的通项公式.(2)设 求数列的前n项和.15.已知公差不为0的等差数列的首项为a(),设数列的前n项和为,且,成等比数列(1)求数列的通项公式及(2)记,当时,试比较与的大小16.设实数数列的前n项和,满足(I)若成等比数列,求和;(II)求证:对参考答案1.解:()设构成等比数列,其中,则并利用,得()由题意和()中计算结果,知另一方面,利用得所以2.解:()0,1,2,1,0是一具满足条件的E数列A5。(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)()必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=1

    5、2+(20001)1=2011.充分性,由于a2000a10001,a2000a10001a2a11所以a2000a19999,即a2000a1+1999. 又因为a1=12,a2000=2011,所以a2000=a1+1999.是递增数列.综上,结论得证。()令因为所以因为所以为偶数,所以要使为偶数,即4整除.当时,有当的项满足,当不能被4整除,此时不存在E数列An,使得3. 4.解()法一:,得,设,则,()当时,是以为首项,为公差的等差数列,即,()当时,设,则,令,得,知是等比数列,又,法二:()当时,是以为首项,为公差的等差数列,即,()当时,猜想,下面用数学归纳法证明:当时,猜想显

    6、然成立;假设当时,则,所以当时,猜想成立,由知,()()当时, ,故时,命题成立;()当时,以上n个式子相加得,故当时,命题成立;综上()()知命题成立5.解:(I)由已知可得,两式相减可得 即 又所以r=0时, 数列为:a,0,0,; 当时,由已知(), 于是由可得, 成等比数列, , 综上,数列的通项公式为 (II)对于任意的,且成等差数列,证明如下: 当r=0时,由(I)知, 对于任意的,且成等差数列, 当,时, 若存在,使得成等差数列, 则, 由(I)知,的公比,于是 对于任意的,且 成等差数列,综上,对于任意的,且成等差数列。6.解析:(I)由知,而,且,则为的一个零点,且在内有零点

    7、,因此至少有两个零点解法1:,记,则。当时,因此在上单调递增,则在内至多只有一个零点。又因为,则在内有零点,所以在内有且只有一个零点。记此零点为,则当时,;当时,;所以,当时,单调递减,而,则在内无零点;当时,单调递增,则在内至多只有一个零点;从而在内至多只有一个零点。综上所述,有且只有两个零点。解法2:,记,则。当时,因此在上单调递增,则在内至多只有一个零点。因此在内也至多只有一个零点,综上所述,有且只有两个零点。(II)记的正零点为,即。(1)当时,由,即.而,因此,由此猜测:。下面用数学归纳法证明:当时,显然成立;假设当时,有成立,则当时,由知,因此,当时,成立。故对任意的,成立。(2)

    8、当时,由(1)知,在上单调递增。则,即。从而,即,由此猜测:。下面用数学归纳法证明:当时,显然成立;假设当时,有成立,则当时,由知,因此,当时,成立。故对任意的,成立。综上所述,存在常数,使得对于任意的,都有.7.(1)设的公比为q,则由成等比数列得即所以的通项公式为 (2)设的公比为q,则由得由,故方程(*)有两个不同的实根由唯一,知方程(*)必有一根为0,代入(*)得8.解:(I)设等差数列的公差为d,由已知条件可得解得,故数列的通项公式为 (II)设数列,即,所以,当时, =所以综上,数列9.解:(I)由题设 即是公差为1的等差数列。 又所以 (II)由(I)得 ,10.解:(I)当时,

    9、不合题意;当时,当且仅当时,符合题意;当时,不合题意。因此所以公式q=3,故 (II)因为 所以当n为偶数时,当n为奇数时,综上所述,11. ; 任意,设,则,即 假设(矛盾), 在数列中、但不在数列中的项恰为。 , 当时,依次有,设为非零实数,12.解析:(1)因为为常数,所以是以为首项,为公比的等比数列。(2)(2)(1)13.(I)解:由 可得,又(II)证明:对任意,得将代入,可得即又因此是等比数列.(III)证明:由(II)可得,于是,对任意,有将以上各式相加,得即,此式当k=1时也成立.由式得从而所以,对任意,对于n=1,不等式显然成立.所以,对任意合计50100%因为是连锁店,老

    10、板的“野心”是开到便利店那样随处可见。所以办了积分卡,方便女孩子到任何一家“漂亮女生”购物,以求便宜再便宜。14.解:()设数列an的公比为q,由得所以。由条件可知c0,故。由得,所以。故数列an的通项式为an=。(3)个性体现()在现代文化影响下,当今大学生对新鲜事物是最为敏感的群体,他们最渴望为社会主流承认又最喜欢标新立异,他们追随时尚,同时也在制造时尚。“DIY自制饰品”已成为一种时尚的生活方式和态度。在“DIY自制饰品”过程中实现自己的个性化追求,这在年轻的学生一代中尤为突出。“DIY自制饰品”的形式多种多样,对于动手能力强的学生来说更受欢迎。大学生对手工艺制作兴趣的调研故所以数列的前

    11、n项和为15.(I)解:设等差数列的公差为d,由手工艺制品是我国一种传统文化的象征,它品种多样,方式新颖,制作简单,深受广大学生朋友的喜欢。当今大学生的消费行为表现在追求新颖,追求时尚。追求个性,表现自我的消费趋向:购买行为有较强的感情色彩,比起男生热衷于的网络游戏,极限运动,手工艺制品更得女生的喜欢。得因为,所以所以(II)解:因为,所以因为,所以当,即为了解目前大学生对DIY手工艺品制作的消费情况,我们于己于人2004年3月22日下午利用下课时间在校园内进行了一次快速抽样调查。据调查本次调查人数共50人,并收回有效问卷50份。调查分析如下:所以,当当他们的成功秘诀在于“连锁”二字。凭借“连锁”,他们在女孩们所喜欢的小玩意上玩出了大名堂。小店连锁,优势明显,主要有:16.(I)解:由题意,此次调查以女生为主,男生只占很少比例,调查发现58的学生月生活费基本在400元左右,其具体分布如(图1-1)由S2是等比中项知5、你认为一件DIY手工艺制品在什么价位可以接受?由解得 (II)证法一:由题设条件有故从而对有 因,由得要证,由只要证即证此式明显成立.因此最后证若不然又因矛盾.因此证法二:由题设知,故方程(可能相同).因此判别式又由因此,解得因此由,得因此更多精品文档

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高考数学数列大题专题训练汇编(DOC 21页).docx
    链接地址:https://www.163wenku.com/p-5698984.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库