书签 分享 收藏 举报 版权申诉 / 20
上传文档赚钱

类型高考数学(理)二轮配套训练(专题6)(3)圆锥曲线中的热点问题(含答案)(DOC 19页).docx

  • 上传人(卖家):2023DOC
  • 文档编号:5698903
  • 上传时间:2023-05-04
  • 格式:DOCX
  • 页数:20
  • 大小:382.56KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高考数学(理)二轮配套训练(专题6)(3)圆锥曲线中的热点问题(含答案)(DOC 19页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题6 高考数学理二轮配套训练【专题6】3圆锥曲线中的热点问题含答案DOC 19页 高考 数学 二轮 配套 训练 专题 圆锥曲线 中的 热点问题 答案 DOC 19 下载 _二轮专题_高考专区_数学_高中
    资源描述:

    1、第3讲圆锥曲线中的热点问题考情解读1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中1直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程若0,则直线与椭圆相交;若0,则直线与椭圆相切;若0时,直线与双曲线相交;当0时,直线与双曲线相切;当b0)的一个顶点,C1的长轴是圆C2:

    2、x2y24的直径l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求ABD面积取最大值时直线l1的方程思维启迪(1)P点是椭圆上顶点,圆C2的直径等于椭圆长轴长;(2)设直线l1的斜率为k,将ABD的面积表示为关于k的函数解(1)由题意得所以椭圆C1的方程为y21.(2)设A(x1,y1),B(x2,y2),D(x0,y0)由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为ykx1.又圆C2:x2y24,故点O到直线l1的距离d,所以|AB|22.又l2l1,故直线l2的方程为xkyk0.由消去y,整理得(4

    3、k2)x28kx0,故x0.所以|PD|.设ABD的面积为S,则S|AB|PD|,所以S,当且仅当k时取等号所以所求直线l1的方程为yx1.思维升华求最值及参数范围的方法有两种:根据题目给出的已知条件或图形特征列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;由题目条件和结论建立目标函数,进而转化为求函数的值域已知椭圆C的左,右焦点分别为F1,F2,椭圆的离心率为,且椭圆经过点P(1,)(1)求椭圆C的标准方程;(2)线段PQ是椭圆过点F2的弦,且,求PF1Q内切圆面积最大时实数的值解(1)e,P(1,)满足1,又a2b2c2,a24,b23,椭圆标准方程为

    4、1.(2)显然直线PQ不与x轴重合,当直线PQ与x轴垂直时,|PQ|3,|F1F2|2,S3;当直线PQ不与x轴垂直时,设直线PQ:yk(x1),k0代入椭圆C的标准方程,整理,得(34k2)y26ky9k20,则y1,y2,S|F1F2|y1y2|12,令t34k2,t3,k2,S3,00.得x1,2,则x1x2,x1x2,x轴是PBQ的角平分线,即y1(x21)y2(x11)0,(kx1b)(x21)(kx2b)(x11)0,2kx1x2(bk)(x1x2)2b0将代入得2kb2(kb)(82bk)2k2b0,kb,此时0,直线l的方程为yk(x1),即直线l过定点(1,0)思维升华(1)

    5、定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关在这类试题中选择消元的方向是非常关键的(2)由直线方程确定定点,若得到了直线方程的点斜式:yy0k(xx0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:ykxm,则直线必过定点(0,m)已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x28y的焦点(1)求椭圆C的方程;(2)已知点P(2,3),Q(2,3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足APQBPQ,试问直线AB的斜率是否为定值,请说明理由解(1)设椭圆C的方程为1(ab0),则b2.

    6、由,a2c2b2,得a4,椭圆C的方程为1.(2)当APQBPQ时,PA、PB的斜率之和为0,设直线PA的斜率为k,则PB的斜率为k,PA的直线方程为y3k(x2),由整理得(34k2)x28(32k)kx4(32k)2480,x12,同理PB的直线方程为y3k(x2),可得x22.x1x2,x1x2,kAB,直线AB的斜率为定值.热点三圆锥曲线中的探索性问题例3已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于下表中:x324y204(1)求C1,C2的标准方程;(2)是否存在直线l满足条件:过C2的焦点F;与C1交于不同的两点

    7、M,N,且满足?若存在,求出直线l的方程;若不存在,说明理由思维启迪(1)比较椭圆及抛物线方程可知,C2的方程易求,确定其上两点,剩余两点,利用待定系数法求C1方程.(2) 联立方程,转化已知条件进行求解.解(1)设抛物线C2:y22px(p0),则有2p(x0),据此验证四个点知(3,2),(4,4)在C2上,易求得C2的标准方程为y24x.设椭圆C1:1(ab0),把点(2,0),(,)代入得,解得,所以C1的标准方程为y21.(2)容易验证当直线l的斜率不存在时,不满足题意当直线l的斜率存在时,设其方程为yk(x1),与C1的交点为M(x1,y1),N(x2,y2)由消去y并整理得(14

    8、k2)x28k2x4(k21)0,于是x1,2,则x1x2,x1x2.所以y1y2k2(x11)(x21)k2x1x2(x1x2)1k21.由,即0,得x1x2y1y20.(*)将代入(*)式,得0,解得k2,所以存在直线l满足条件,且直线l的方程为2xy20或2xy20.思维升华解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型解决问题的一般策略是先假设结论成立,然后进行演绎推理或导出矛盾,即可否定假设或推出合理结论,验证后肯定结论,对于“存在”或“不存在”的问题,直接用条件证明或采用反证法证明解答时,不但需要熟练掌握圆锥曲线的概念、性质、方程及不等式、判别式等知识,还要具备较强的

    9、审题能力、逻辑思维能力以及运用数形结合的思想分析问题和解决问题的能力已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由解方法一(1)依题意,可设椭圆C的方程为1(ab0),且可知其左焦点为F(2,0)从而有解得又a2b2c2,所以b212,故椭圆C的方程为1.(2)假设存在符合题意的直线l,设其方程为yxt.由得3x23txt2120.因为直线l与椭圆C有公共点,所以(3t)243(t212)0,解得4t4.另一方面

    10、,由直线OA与l的距离d4,得4,解得t2.由于24,4,所以符合题意的直线l不存在方法二(1)依题意,可设椭圆C的方程为1(ab0),且有解得b212,b23(舍去)从而a216.所以椭圆C的方程为1.(2)同方法一1圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑:利用判别式来构造不等关系,从而确定参数的取值范围;利用已知参数的范围,求新参数的范围,解这类问题的核心是在

    11、两个参数之间建立等量关系;利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;利用基本不等式求出参数的取值范围;利用函数的值域的求法,确定参数的取值范围2定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果3探索性问题的解法探索是否存在的问题,一般是先假设存在,然后寻找理由去确定结论,如果真的存在,则可以得出相应存在的结论;若不存在,则会由条件得出矛盾,再下结论不存在即可.真题感悟(2014北京)已知椭圆C:x22y24.(1)求椭圆C的离心率;

    12、(2)设O为原点,若点A在椭圆C上,点B在直线y2上,且OAOB,试判断直线AB与圆x2y22的位置关系,并证明你的结论解(1)由题意,得椭圆C的标准方程为1,所以a24,b22,从而c2a2b22.因此a2,c.故椭圆C的离心率e.(2)直线AB与圆x2y22相切证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x00.因为OAOB,所以0,即tx02y00,解得t.当x0t时,y0,代入椭圆C的方程,得t,故直线AB的方程为x,圆心O到直线AB的距离d.此时直线AB与圆x2y22相切当x0t时,直线AB的方程为y2(xt)即(y02)x(x0t)y2x0ty00.圆心O到直线

    13、AB的距离d.又x2y4,t,故d.此时直线AB与圆x2y22相切押题精练已知椭圆C:1(ab0)的离心率为,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且EGF2的周长为4.(1)求椭圆C的方程;(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足t(O为坐标原点),当|0,得k2.x1,2,x1x2,x1x2,t,(x1x2,y1y2)t(x,y),x,yk(x1x2)4k.点P在椭圆C上,22,16k2t2(12k2)|,|x1x2|,(1k2)(x1x2)24x1x2,(1k2)40,k2.k2.16k2t2(12k2),t28,又1

    14、2k22,t284,2t或t0,b0)渐近线的距离为,点P是抛物线y28x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x2的距离之和的最小值为3,则该双曲线的方程为()A.1 By21C.x21 D.1答案C解析由题意得,抛物线y28x的焦点F(2,0),双曲线C:1(a0,b0)的一条渐近线的方程为axby0,抛物线y28x的焦点F到双曲线C:1(a0,b0)渐近线的距离为,a2b.P到双曲线C的上焦点F1(0,c)的距离与到直线x2的距离之和的最小值为3,|FF1|3,c249,c,c2a2b2,a2b,a2,b1.双曲线的方程为x21,故选C.4若点O和点F分别为椭圆1的

    15、中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A2 B3 C6 D8答案C解析设P(x0,y0),则1,即y3,又因为F(1,0),所以x0(x01)yxx03(x02)22,又x02,2,即2,6,所以()max6.5设M(x0,y0)为抛物线C:x28y上一点,F为抛物线C的焦点,以F为圆心,|FM|为半径的圆和抛物线的准线相交,则y0的取值范围是()A(0,2) B0,2C(2,) D2,)答案C解析依题意得F(0,2),准线方程为y2,又以F为圆心,|FM|为半径的圆和抛物线的准线相交,且|FM|y02|,|FM|4,即|y02|4,又y00,y02.6已知双曲线1(a0,b0

    16、)的左,右焦点分别为F1(c,0),F2(c,0),若双曲线上存在点P满足,则该双曲线的离心率的取值范围为()A(1,1) B(1,)C(,) D(1,)答案A解析根据正弦定理得,所以由可得,即e,所以|PF1|e|PF2|.因为e1,所以|PF1|PF2|,点P在双曲线的右支上又|PF1|PF2|e|PF2|PF2|PF2|(e1)2a,解得|PF2|,因为|PF2|ca,所以ca,即e1,即(e1)22,解得1e1,所以e(1,1),故选A.二、填空题7直线ykx1与椭圆1恒有公共点,则m的取值范围是_答案m1且m5解析方程1表示椭圆,m0且m5.直线ykx1恒过(0,1)点,要使直线与椭

    17、圆总有公共点,应有:1,m1,m的取值范围是m1且m5.8在直线y2上任取一点Q,过Q作抛物线x24y的切线,切点分别为A、B,则直线AB恒过定点_答案(0,2)解析设Q(t,2),A(x1,y1),B(x2,y2),抛物线方程变为yx2,则yx,则在点A处的切线方程为yy1x1(xx1),化简得,yx1xy1,同理,在点B处的切线方程为yx2xy2.又点Q(t,2)的坐标满足这两个方程,代入得:2x1ty1,2x2ty2,则说明A(x1,y1),B(x2,y2)都满足方程2xty,即直线AB的方程为:y2tx,因此直线AB恒过定点(0,2)9(2014辽宁)已知椭圆C:1,点M与C的焦点不重

    18、合若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|BN|_.答案12解析椭圆1中,a3.如图,设MN的中点为D,则|DF1|DF2|2a6.D,F1,F2分别为MN,AM,BM的中点,|BN|2|DF2|,|AN|2|DF1|,|AN|BN|2(|DF1|DF2|)12.10(2013安徽)已知直线ya交抛物线yx2于A,B两点若该抛物线上存在点C,使得ACB为直角,则a的取值范围为_答案1,)解析以AB为直径的圆的方程为x2(ya)2a,由得y2(12a)ya2a0.即(ya)y(a1)0,由已知解得a1.三、解答题11已知点A、B的坐标分别是(0,1)、(0,1),直

    19、线AM、BM相交于点M,且它们的斜率之积为.(1)求点M轨迹C的方程;(2)若过点D(0,2)的直线l与(1)中的轨迹C交于不同的两点E、F,试求OEF面积的取值范围(O为坐标原点)解(1)设点M的坐标为(x,y),kAMkBM.整理,得y21(x0),即M的轨迹方程为y21.(2)由题意知直线l的斜率存在,设l的方程为ykx2,将代入y21得:(2k21)x28kx60,由0,解得k2.设E(x1,y1),F(x2,y2),则则|x1x2|.SOEFSOEDSOFDOD|x1|OD|x2|OD|x1x2|2|x1x2|x1x2| .令k2t(t0),所以k2t(t0),所以SOEF|x1x2

    20、| 222,故EOF面积的取值范围是(0,12如图,已知椭圆C:1(ab0)的离心率为,以椭圆C的左顶点T为圆心作圆T:(x2)2y2r2(r0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|OS|为定值(1)解依题意,得a2,e,所以c,b1.故椭圆C的方程为y21.(2)解点M与点N关于x轴对称,设M(x1,y1),N(x1,y1),不妨设y10.由于点M在椭圆C上,所以y1.(*)由已知得T(2,0),则(x12,y1),(x12,y1),所以(x12)2y(x12)2(1)x4x13(x1)2.由于2x12,故当x1时,取得最小值为.把x1代入(*)式,得y1,故M(,),又点M在圆T上,代入圆的方程得到r2.故圆T的方程为:(x2)2y2.(3)证明设P(x0,y0),则直线MP的方程为:yy0(xx0),令y0,得xR,同理:xS,故xRxS,(*)又点M与点P在椭圆上,故x4(1y),x4(1y),代入(*)式,得xRxS4.所以|OR|OS|xR|xS|xRxS|4为定值

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高考数学(理)二轮配套训练(专题6)(3)圆锥曲线中的热点问题(含答案)(DOC 19页).docx
    链接地址:https://www.163wenku.com/p-5698903.html
    2023DOC
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库