高考二项式定理题型归纳(DOC 4页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考二项式定理题型归纳(DOC 4页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考二项式定理题型归纳DOC 4页 高考 二项式 定理 题型 归纳 DOC 下载 _各科综合_高中
- 资源描述:
-
1、六、二项式定理一、指数函数运算知识点:1整数指数幂的概念 2运算性质: ,3注意 可看作 = 可看作 =4、 (a0,m,nN*,且n1) 例题:例1求值:.例2用分数指数幂的形式表示下列各式:1) (式中a0) 2) 3) 例3计算下列各式(式中字母都是正数) 例4计算下列各式: 例5化简:例6 已知x+x-1=3,求下列各式的值:二、二项式知识回顾1. 二项式定理,以上展开式共n+1项,其中叫做二项式系数,叫做二项展开式的通项.(请同学完成下列二项展开式), 式中分别令x=1和x=-1,则可以得到 ,即二项式系数和等于;偶数项二项式系数和等于奇数项二项式系数和,即 式中令x=1则可以得到二
2、项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即.(2)二项式系数增减性与最大值:当时,二项式系数是递增的;当时,二项式系数是递减的.当n是偶数时,中间一项取得最大值.当n是奇数时,中间两项和相等,且同时取得最大值.三、考试类型1、“展开式例1求的展开式;解:原式= =【练习1】求的展开式2.求展开式中的项例2.已知在的展开式中,第6项为常数项.(1) 求n; (2)求含的项的系数;(3)求展开式中所有的有理项.3.二项展开式中的系数已知的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含的项;(2)求展开式中系数最大的项和
3、二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数的展开式中,项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数(04改编)的展开式中,常数项是 ;6、求中间项例6求(的展开式的中间项;解:展开式的中间项为 即:。 当为奇数时,的展开式的中间项是和;当为偶数时,的展开式的中间项是。7、 有理项例7 的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00)在二项式的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求展开式中系数最大的项;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和 例11若, 则的值为 ; 解: 令,有, 令,有 故原式=【练习1】若, 则 ;【练习2】设, 则 ;10利用二项式定理求近似值 例15求的近似值,使误差小于; 分析:因为=,故可以用二项式定理展开计算。 解:= , 且第3项以后的绝对值都小于, 从第3项起,以后的项都可以忽略不计。 = 小结:由,当的绝对值与1相比很小且很大时,等项的绝对值都很小,因此在精确度允许的围可以忽略不计,因此可以用近似计算公式:,在使用这个公式时,要注意按问题对精确度的要求,来确定对展开式中各项的取舍,若精确度要求较高,则可以使用更精确的公式:。
展开阅读全文