书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型高考数学压轴专题(易错题)备战高考《空间向量与立体几何》难题汇编附答案(DOC 15页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5698818
  • 上传时间:2023-05-04
  • 格式:DOC
  • 页数:15
  • 大小:1.33MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高考数学压轴专题(易错题)备战高考《空间向量与立体几何》难题汇编附答案(DOC 15页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    空间向量与立体几何 高考数学压轴专题易错题备战高考空间向量与立体几何难题汇编附答案DOC 15页 高考 数学 压轴 专题 易错题 备战 空间 向量 立体几何 难题 汇编 答案 DOC 15 下载 _各科综合_高中
    资源描述:

    1、新空间向量与立体几何专题一、选择题1设、是两条不同的直线,、是两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中真命题的序号为( )A和B和C和D和【答案】A【解析】【分析】逐一分析命题的正误,可得出合适的选项.【详解】对于命题,若,过直线作平面,使得,则,命题正确;对于命题,对于命题,若,则,命题正确;对于命题,若,则与相交、平行或异面,命题错误;对于命题,若,则或,命题错误.故选:A.【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.2鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)

    2、啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )ABCD【答案】A【解析】【分析】该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可.【详解】由题图可知,该鲁班锁玩具可以看成是一个棱长为的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,侧棱长为,则该几何体的表面积为.故选:A.【点睛】本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.3已知正方体中,分别为,的中点,则

    3、异面直线与所成角的大小为( )ABCD【答案】D【解析】【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解【详解】如图:作的中点,连接,由题设可知,则异面直线与所成角为或其补角,设正方体的边长为4,由几何关系可得, ,得,即故选D【点睛】本题考查异面直线的求法,属于基础题4已知平面=l,m是内不同于l的直线,那么下列命题中错误的是( )A若m,则mlB若ml,则mC若m,则mlD若ml,则m【答案】D【解析】【分析】A由线面平行的性质定理判断.B根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C根据线面垂直的定义判断.D根据线面垂直的判定定理判断.【详解

    4、】A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;故选:D.【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.5设为平面,为两条不同的直线,则下列叙述正确的是( )A若,则B若,则C若,则D若,则【答案】B【解析】【分析】利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解【详解】若,则与相交、平行或异面,故错误;若

    5、,则由直线与平面垂直的判定定理知,故正确;若,则或,故错误;若,则,或,或与相交,故错误故选:【点睛】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养6已知某几何体的三视图如图所示,则该几何体的外接球的表面积为( )ABCD【答案】C【解析】【分析】该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,把这个三棱锥放到正方体中,即可求出其外接球的表面积.【详解】由三视图可知,该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,如图所示 该几何体是棱长为1的正方体中的三棱锥.所以该三棱锥的外接球即为此正方体的外接球,球的直径为正方体体对角线的长.即.

    6、所以外接球的表面积为.故选:.【点睛】本题考查几何体的三视图,考查学生的空间想象能力,属于基础题.7已知正方体的棱的中点为,与交于点,平面过点且与直线垂直,若,则平面截该正方体所得截面图形的面积为( )ABCD【答案】A【解析】【分析】根据正方体的垂直关系可得平面,进而,可考虑平面是否为所求的平面,只需证明即可确定平面.【详解】如图所示,正方体中,为棱的中点,则,;又平面,且,平面,且,即截该正方体所得截面图形的面积为.故选:.【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.8以下说法正确的有几个( )四边形确定一个平面;如果一条直线在平

    7、面外,那么这条直线与该平面没有公共点;过直线外一点有且只有一条直线与已知直线平行;如果两条直线垂直于同一条直线,那么这两条直线平行;A0个B1个C2个D3个【答案】B【解析】【分析】对四个说法逐一分析,由此得出正确的个数.【详解】错误,如空间四边形确定一个三棱锥. 错误,直线可能和平面相交. 正确,根据公理二可判断正确. 错误,在空间中,垂直于同一条直线的两条直线可能相交,也可能异面,也可能平行.综上所述,正确的说法有个,故选B.【点睛】本小题主要考查空间有关命题真假性的判断,属于基础题.9如图,在长方体中,,而对角线上存在一点,使得取得最小值,则此最小值为( )ABCD【答案】A【解析】【分

    8、析】把面绕旋转至面使其与对角面在同一平面上,连接并求出,就是最小值【详解】把面绕旋转至面使其与对角面在同一平面上,连接就是的最小值,所以故选【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题10如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A2对B3对C4对D5对【答案】C【解析】【分析】画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面平面,作POAD于O,则有PO平面ABCD,P

    9、OCD,又ADCD,所以,CD平面PAD,所以平面平面,同理可证:平面平面,由三视图可知:POAOOD,所以,APPD,又APCD,所以,AP平面PCD,所以,平面平面,所以该多面体各表面所在平面互相垂直的有4对【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题11如图,在棱长为2的正方体中,点是的中点,动点在底面内(不包括边界),若平面,则的最小值是( )ABCD【答案】B【解析】【分析】在上取中点,在上取中点,连接,根据面面平行的判定定理可知平面平面,从而可得的轨迹是(不含两点);由垂直关系可知当时,取得最小值;利用面积桥和勾股定理可求得最小值.

    10、【详解】如图,在上取中点,在上取中点,连接,且,平面平面,则动点的轨迹是(不含两点)又平面,则当时,取得最小值此时, 本题正确选项:【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.12已知是两条不同的直线,是两个不同的平面,则下列可以推出的是( )ABCD【答案】D【解析】【分析】A,有可能出现,平行这种情况.B,会出现平面,相交但不垂直的情况.C,根据面面平行的性质定理判断.D,根据面面垂直的判定定理判断.【详解】对于A,若,则,故A错误;对于B,会出现平面,相交但不垂直的情况,故B错误;对于C,因为,则,又因为,故C错误;

    11、对于D,又由,故D正确.故选:D【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.13设,是两个不同的平面,是直线且“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】B【解析】试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,和没有公共点,即能得到;“”是“”的必要不充分条件故选B考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平

    12、行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.14如下图,在正方体中,点分别为棱,的中点,点为上底面的中心,过三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连接和的任一点,设与平面所成角为,则的最大值为( )ABCD【答案】B【解析】【分析】连接EF,可证平行四边形EFGH为截面,由题意可找到与平面所成的角,进而得到sin的最大值.【详解】连接EF,因为EF/面ABCD,所以过EFO的平面与平面ABCD的交线一定是过点O且与EF平行的直线,过点O作GH/BC交CD于点G,交AB于H点,则GH/EF,连接EH,FG,则平行四边形EFGH为截面

    13、,则五棱柱为,三棱柱EBH-FCG为,设M点为的任一点,过M点作底面的垂线,垂足为N,连接,则即为与平面所成的角,所以=,因为sin=,要使的正弦最大,必须MN最大,最小,当点M与点H重合时符合题意,故sin的最大值为=,故选B【点睛】本题考查空间中的平行关系与平面公理的应用,考查线面角的求法,属于中档题.15若圆锥的高等于底面直径,则它的底面积与侧面积之比为A12B1C1D2【答案】C【解析】【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案【详解】设圆锥底面半径为r,则高h2r,其母线长lrS侧rlr2,S底r故选C【点睛】本题考查的知识点是旋转体,圆锥的表面积公式

    14、,属于基础题16已知正三棱柱的所有棱长都相等,是的中点,则与平面所成角的正弦值为( )ABCD【答案】D【解析】【分析】先找出直线AD与平面所成角,然后在中,求出,即可得到本题答案.【详解】如图,取中点,作于,连接,则即为与平面所成角.不妨设棱长为4,则,.故选:D【点睛】本题主要考查直线与平面所成角的求法,找出线面所成角是解决此类题目的关键.17圆锥(其中为顶点,为底面圆心)的侧面积与底面积的比是,则圆锥与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( )ABCD【答案】A【解析】【分析】根据已知条件求得圆锥母线与底面圆半径r的关系,从而得到圆锥的高与r关系,计算圆锥体积,由截面

    15、图得到外接球的半径R与r间的关系,计算球的体积,作比即可得到答案.【详解】设圆锥底面圆的半径为r,圆锥母线长为l,则侧面积为,侧面积与底面积的比为,则母线l=2r,圆锥的高为h=,则圆锥的体积为,设外接球的球心为O,半径为R,截面图如图,则OB=OS=R,OD=h-R=,BD=r,在直角三角形BOD中,由勾股定理得,即,展开整理得R=所以外接球的体积为,故所求体积比为故选:A【点睛】本题考查圆锥与球的体积公式的应用,考查学生计算能力,属于中档题.18某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )ABC2D1【答案】A【解析】由三视图可知该多面体的直观图为如图所示的四棱锥:其

    16、中,四边形为边长为1的正方形,面,且,.,,最长棱为故选A.点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:首先看俯视图,根据俯视图画出几何体地面的直观图;观察正视图和侧视图找到几何体前、后、左、右的高度;画出整体,然后再根据三视图进行调整.19如图1,已知正方体ABCD-A1B1C1D1的棱长为2,M,N,Q分别是线段AD1,B1C,C1D1上的动点,当三棱锥Q-BMN的正

    17、视图如图2所示时,三棱锥俯视图的面积为A2B1CD【答案】C【解析】【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可【详解】由正视图可知:是的中点,在处,在的中点,俯视图如图所示:可得其面积为:,故选C【点睛】本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.20设是两个不同的平面,是两条不同的直线,且,则( )A若,则B若,则C若,则D若,则【答案】C【解析】【分析】根据空间线线、线面、面面的位置关系,对选项进行逐一判断可得答案.【详解】A. 若,则与可能平行,可能异面,所以A不正确.B. 若,则与可能平行,可能相交,所以B不正确.C. 若,由,根据面面垂直的判定定理可得,所以C正确.D若,且,则与可能平行,可能异面,可能相交, 所以D不正确.【点睛】本题考查空间线线、线面、面面的位置判断定理和性质定理,考查空间想象能力,属于基础题.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高考数学压轴专题(易错题)备战高考《空间向量与立体几何》难题汇编附答案(DOC 15页).doc
    链接地址:https://www.163wenku.com/p-5698818.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库