高考数学压轴专题(易错题)备战高考《空间向量与立体几何》难题汇编附答案(DOC 15页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学压轴专题(易错题)备战高考《空间向量与立体几何》难题汇编附答案(DOC 15页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间向量与立体几何 高考数学压轴专题易错题备战高考空间向量与立体几何难题汇编附答案DOC 15页 高考 数学 压轴 专题 易错题 备战 空间 向量 立体几何 难题 汇编 答案 DOC 15 下载 _各科综合_高中
- 资源描述:
-
1、新空间向量与立体几何专题一、选择题1设、是两条不同的直线,、是两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中真命题的序号为( )A和B和C和D和【答案】A【解析】【分析】逐一分析命题的正误,可得出合适的选项.【详解】对于命题,若,过直线作平面,使得,则,命题正确;对于命题,对于命题,若,则,命题正确;对于命题,若,则与相交、平行或异面,命题错误;对于命题,若,则或,命题错误.故选:A.【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.2鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)
2、啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )ABCD【答案】A【解析】【分析】该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可.【详解】由题图可知,该鲁班锁玩具可以看成是一个棱长为的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为2,侧棱长为,则该几何体的表面积为.故选:A.【点睛】本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.3已知正方体中,分别为,的中点,则
3、异面直线与所成角的大小为( )ABCD【答案】D【解析】【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解【详解】如图:作的中点,连接,由题设可知,则异面直线与所成角为或其补角,设正方体的边长为4,由几何关系可得, ,得,即故选D【点睛】本题考查异面直线的求法,属于基础题4已知平面=l,m是内不同于l的直线,那么下列命题中错误的是( )A若m,则mlB若ml,则mC若m,则mlD若ml,则m【答案】D【解析】【分析】A由线面平行的性质定理判断.B根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C根据线面垂直的定义判断.D根据线面垂直的判定定理判断.【详解
4、】A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;故选:D.【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.5设为平面,为两条不同的直线,则下列叙述正确的是( )A若,则B若,则C若,则D若,则【答案】B【解析】【分析】利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解【详解】若,则与相交、平行或异面,故错误;若
5、,则由直线与平面垂直的判定定理知,故正确;若,则或,故错误;若,则,或,或与相交,故错误故选:【点睛】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养6已知某几何体的三视图如图所示,则该几何体的外接球的表面积为( )ABCD【答案】C【解析】【分析】该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,把这个三棱锥放到正方体中,即可求出其外接球的表面积.【详解】由三视图可知,该几何体是一个三棱锥,且同一个顶点处的三条棱两两垂直并且相等,如图所示 该几何体是棱长为1的正方体中的三棱锥.所以该三棱锥的外接球即为此正方体的外接球,球的直径为正方体体对角线的长.即.
6、所以外接球的表面积为.故选:.【点睛】本题考查几何体的三视图,考查学生的空间想象能力,属于基础题.7已知正方体的棱的中点为,与交于点,平面过点且与直线垂直,若,则平面截该正方体所得截面图形的面积为( )ABCD【答案】A【解析】【分析】根据正方体的垂直关系可得平面,进而,可考虑平面是否为所求的平面,只需证明即可确定平面.【详解】如图所示,正方体中,为棱的中点,则,;又平面,且,平面,且,即截该正方体所得截面图形的面积为.故选:.【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.8以下说法正确的有几个( )四边形确定一个平面;如果一条直线在平
7、面外,那么这条直线与该平面没有公共点;过直线外一点有且只有一条直线与已知直线平行;如果两条直线垂直于同一条直线,那么这两条直线平行;A0个B1个C2个D3个【答案】B【解析】【分析】对四个说法逐一分析,由此得出正确的个数.【详解】错误,如空间四边形确定一个三棱锥. 错误,直线可能和平面相交. 正确,根据公理二可判断正确. 错误,在空间中,垂直于同一条直线的两条直线可能相交,也可能异面,也可能平行.综上所述,正确的说法有个,故选B.【点睛】本小题主要考查空间有关命题真假性的判断,属于基础题.9如图,在长方体中,,而对角线上存在一点,使得取得最小值,则此最小值为( )ABCD【答案】A【解析】【分
8、析】把面绕旋转至面使其与对角面在同一平面上,连接并求出,就是最小值【详解】把面绕旋转至面使其与对角面在同一平面上,连接就是的最小值,所以故选【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题10如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A2对B3对C4对D5对【答案】C【解析】【分析】画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面平面,作POAD于O,则有PO平面ABCD,P
展开阅读全文