(完整版)高考导数专题(含详细解答).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)高考导数专题(含详细解答).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 高考 导数 专题 详细 解答 下载 _各科综合_高中
- 资源描述:
-
1、导数及其应用导数的运算1. 几种常见的函数导数:、 (c为常数); 、 (); 、= ;、 = ; 、 ; 、 ; 、 ; 、 .2. 求导数的四则运算法则:; 注: 必须是可导函数.3. 复合函数的求导法则: 或 一、求曲线的切线(导数几何意义)导数几何意义:表示函数在点(,)处切线L的斜率;函数在点(,)处切线L方程为1.曲线在点处的切线方程为( )。A:B:C:D:答案详解B正确率: 69%, 易错项: C解析:本题主要考查导数的几何意义、导数的计算以及直线方程的求解。对求导得,代入得即为切线的斜率,切点为,所以切线方程为即。故本题正确答案为B。2. 变式一:3.设函数,曲线在点处的切线
2、方程为,则曲线在点处切线的斜率为( )ABCD4.已知函数在R上满足,则曲线在点处的切线方程是 ( )A. B. C. D. 变式二:5.在平面直角坐标系中,点P在曲线上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 . 6.设曲线在点(1,1)处的切线与x轴的交点的横坐标为,令,则的值为 . 7.已知点P在曲线y=上,为曲线在点P处的切线的倾斜角,则的取值范围是 A、0,) B、 C、 D、变式三:8. 已知直线y =x1与曲线相切,则的值为( ) A.1 B. 2 C.1 D.29.若存在过点的直线与曲线和都相切,则等于( ) A或 B或 C或 D或10.若曲线在点处
3、的切线与两个坐标围成的三角形的面积为18,则 A、64 B、32 C、16 D、8 11.(本小题满分13分) 设.(I)求在上的最小值;(II)设曲线在点的切线方程为;求的值.12.若曲线存在垂直于轴的切线,则实数的取值范围是 .二、求单调性或单调区间1、利用导数判定函数单调性的方法:设函数在某个区间D内可导,如果0,则在区间D上为增函数;如果0,则在区间D上为减函数;如果=0恒成立,则在区间D上为常数.2、利用导数求函数单调区间的方法:不等式0的解集与函数定义域的交集,就是的增区间;不等式0的解集与函数定义域的交集,就是的减区间.1、函数的单调递增区间是( )A. B.(0,3) C.(1
4、,4) D. 2.函数的单调减区间为 . 3.已知函数,讨论的单调性。答案详解由题意,的定义域是,所以有。设,二次方程的的判别式。当,即时, 对一切都有。此时,在上是增函数;当时,此时在上也是增函数;当,即时,方程有两个不同的实根,。此时在上单调递增,在上单调递减,在上单调递增。解析:本题主要考查导数在研究函数中的应用。本题的难点在于参数分类的讨论,如何做到不重不漏。首先在定义域的情况下,对函数求导,在求极值的过程中,会涉及到二次方程的根个数问题,要针对判别式进行分类讨论,在极值为两个的情况下,讨论其与定义域的关系,并根据导数与函数增减性的关系,列表求得函数增减性。4. 已知函数。()当时,求
5、曲线在点处的切线的斜率;()当时,求函数的单调区间与极值。答案详解()当时,故。所以曲线在点处的切线的斜率为。()。令,解得或,由知,。以下分两种情况讨论:(1)若,则。当变化时,的变化情况如下表:所以在内是增函数,在内是减函数;函数在处取得极大值,且;函数在处取得极小值,且。(2)若,则。当变化时,的变化情况如下表:所以在内是增函数,在内是减函数;函数在处取得极大值,且;函数在处取得极小值,且。解析:本题主要考查利用导数判断函数单调性。()求出这种情况下,函数在处的导数,即为切线斜率。()首先求解出极值,然后对参数进行分类讨论,使用列表法,对函数和导数列表,列出函数的单调区间和极值。三、求函
6、数的极值与最值1、极值的判别方法:当函数在点处连续时, 如果在附近的左侧0,右侧0,那么是极大值; 如果在附近的左侧0,右侧0,那么是极小值.也就是说是极值点的充分条件为点两侧导数异号,而不是=0. 2、最值的求法:求f (x)在a,b 上的最大值与最小值的步骤如下:(1) 求 f (x) 在区间 (a,b) 内的极值(极大值或极小值);(2) 将 y = f (x) 的各极值与端点处的函数值 f (a)、f (b) 比较,其中最大的一个为最大值,最小的一个最小值.注:极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.1.设函数,则( )A. 为的极大值点 B
7、.为的极小值点C. 为的极大值点 D. 为的极小值点答案详解D正确率: 53%, 易错项: B解析:本题主要考查函数极值的计算。令导函数求得,且在上小于零,在上大于零,则在上单调递减,在上单调递增,为的极小值点。2.函数在 处取得极小值.3.(本小题满分13分,()小问6分,()小问7分.)设其中,曲线在点处的切线垂直于轴.() 求的值;()求函数的极值. 4. (本小题满分13分) 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3x6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(I)求a的值.(II)若该商
8、品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.5请你设计一个包装盒,如图所示,ABCD是边长为60的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合与图中的点P,正好形成一个正四棱柱形状的包装盒.E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设.(1)某广告商要求包装盒的侧面积S最大,试问应取何值?(2)某厂商要求包装盒的容积V最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.答案详解(1),所以时侧面积最大。(2),所以。当时,递增,当时,递减,所以,当时,最大。此时,包装盒的高与底
9、面边长的比值为。解析:本题主要考查函数和配方法求函数最值的方法。(1)由图写出侧面积的函数表达式,再对表达式化简、配方,即可求得取最大值对应的值。(2)由图写出容积的函数表达式,再通过对函数求导,判断函数的单调性,从而求得取最大值对应的值,再求解高与底面边长的比值即可。四、判断函数的零点1.函数f(x)=的零点所在的一个区间是 A.(2,1); B.(1,0); C.(0,1); D.(1,2)答案详解B正确率: 64%, 易错项: C解析:本题主要考查连续函数的性质。由于是连续函数,且在上单调递增,根据零点附近函数值符号相反,可采用代入排除的方法求解。A项,故A项错误;B项,则零点定理知有零
10、点在区间上,故B项正确;C项,故C项错误;D项,故D项错误。综上所述:符合题意的是B项。故本题正确答案为B。2.设函数则( )A.在区间内均有零点; B.在区间内均无零点;C.在区间内有零点,在区间内无零点;D.在区间内无零点,在区间内有零点. 答案详解D正确率: 33%, 易错项: C解析:本题主要考查导数的应用。定义域为,先对求导,解得在单调递减,单调递增。讨论上,在其上单调,故在上无零点;讨论上,在其上单调,故在上有零点。故本题正确答案为D。易错项分析:零点存在定理不熟悉导致易错;零点存在定理适应于连续函数在给定区间里的零点问题,局限于判断在给定区间是否有零点,而对于在给定的区间有多少个
11、零点却无法处理。3.已知函数yx33xc的图像与x轴恰有两个公共点,则cA.2或2 ; B.9或3 ; C.1或1; D.3或1答案详解A正确率: 53%, 易错项: C解析:本题主要考查导数在函数中应用。对函数求导,得到函数的增减性和极值,作出函数图象。由图可知,当函数取极大值和极小值时,有两个横坐标与之对应。极大值为2,极小值为2。可知,。故本题正确答案为A。4. 16分)若函数在处取得极大值或极小值,则称为函数 的极值点. 已知是实数,1和是函数的两个极值点(1)求和的值;(2)设函数的导函数,求的极值点;(3)设,其中,求函数的零点个数答案详解(1)由题设知,且,解得。(2)由(1)知
12、,因为,所以的根为,于是函数的极值点只可能是或。当时,当时,故是的极值点,当或时,故不是的极值点,所以的极值点为。(3)由(1)知,其函数图象如下图所示,先讨论()的零点,即与的交点的个数:时,由图象得的零点为和;时,由图象得的零点为和;时,由图象得的零点为,;时,由图象得的零点分别在,三个区间内;时,由图象得的零点分别在,三个区间内。令,现在考虑()的零点:当时,有两个根和,而有三个不同的根,分别在,三个区间内,有两个不同的根和,故有个零点。当时,有两个根和,而有三个不同的根,分别在,三个区间内,有两个不同的根和,故有个零点。当时,有三个不同的根,满足,而(,)有三个不同的根,故有个零点。综
展开阅读全文