中考数学中的几何最值问题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学中的几何最值问题.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 中的 几何 问题 下载 _各科综合资料_初中
- 资源描述:
-
1、中考数学中的几何最值问题在近几年各地中考中,几何最值问题屡屡受到命题者关注,此类问题不仅涉及平面几何的基础知识,还涉及几何图形的性质、平面直角坐标系、方程与不等式、函数知识等。因此一批立意新颖、构造精巧、考点突出的新题、活题脱颖而出。这类试题较好地考查了同学们的几何探究、推理能力的要求及数学思想方法的运用。本节课以近几年的全国各地的中考题为例加以讲解,希对同学们的备考有所帮助。OyxACB1(2009年潍坊市)已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是_ 解:取AB的中点D,连结OD、CD、OC,则OD=,且CDAB,
2、CD=,当C,D,O三点共线时,OC=OD+CD,否则OCOD+CD,OC长的最大值是+。点评 本题求一条线段的最大值,关键是抓住斜边长度确定,斜边上的中线长也确定,利用三角形两边之和大于第三边,寻找突破口从而求解。2(2008年兰州)如图,在中,经过点且与边相切的动圆与分别相交于点,则线段长度的最小值是( )A B C5 D4.8解:易知ABC是直角三角形,所以EF是圆的直径,设切点是D,因为直径是圆中最长的弦,所以EFCD,作CHAB于点H,则CDCH,所以有EFCH,即长度的最小值是CH,利用面积方法易得CH=4.8。所以线段长度的最小值是4.8,故选D。点评 本题求一条线段的最小值,通
3、过转化后利用垂线段最短求解。3(2009年四川达州)在边长为2的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则PBQ周长的最小值为_(结果不取近似值)。解:B、Q在直线AC同侧,动点P只能在AC上运动。PBQ中,B、Q为定点,故BQ长度不变,要使PBQ周长最小,应使动点P到两定点B、Q之和PB+PQ最小。直线AC是正方形的对称轴,点Q关于对角线AC的对称点Q一定落在边CD上,如图所示,当B、P、 Q共线时PB+PQ=PB+PQ=BQ=取最小值,则PBQ周长的最小值为+1。点评 本题有一定的难度,PBQ周长的最小值问题转为求一个动点到两个定点的距离和的最小值问
4、题,通过作对称点的方法,当三点共线时,两条线段和PBQ周长的最小。4(2010年苏州)如图,已知A、B两点的坐标分别为(2,0)、(0,2),C的圆心坐标为(1,0),半径为1若D是C上的一个动点,线段DA与y轴交于点E,则ABE面积的最小值是( ) A2 B1 C D解:当AD为C的切线,切点为D时,OE最长,BE最短,此时ABE面积最小,易证AOEADC,所以,可求得OE=,于是BE=2-,从而ABE面积的最小值是。选D。点评 本题求面积的最小值,由于三角形的高确定,因此只要求底(即一条线段)的最小值即可,根据圆的性质,易知AD处于极端位置(切线)时,所求三角形的面积最小。5(2010年天
5、津市)在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在轴、轴的正半轴上,D为边OB的中点.(1)若为边上的一个动点,当的周长最小时,求点的坐标;(2)若、为边上的两个动点,且,当四边形的周长最小时,求点、的坐标.温馨提示 如图可以作点D关于x轴的对称点D,连接C D与x轴交于点E,的周长是最小的。这样,你只需要求出OE的长,就可以确定点E的坐标了。yBODCAxEyBODCAx解:(1)如图,作点D关于轴的对称点,连接与轴交于点E,连接.若在边上任取点(与点E不重合),连接、.由,可知的周长最小. 在矩形中,为的中点,yBODCAxE ,. OEBC, RtRt,有. . 点的坐标
6、为(1,0). (2)如图,作点关于轴的对称点,在边上截取,连接与轴交于点,在上截取. GCEF, 四边形为平行四边形,有.又 、的长为定值,yBODCAxEGF 此时得到的点、使四边形的周长最小. OEBC, RtRt, 有 . . . 点的坐标为(,0),点的坐标为(,0)点评 本题(1)有一个温馨提示,而问题(2)要使四边形CDEF的周长最小,注意到DC、EF的长为定值,故只需DE+CF最小,用轴对称及平移方法设法将DE、CF集中到一条直线上解决问题。6(2009年郴州市)如图1,已知正比例函数和反比例函数的图像都经过点M(2,1),且P(1,2)为双曲线上的一点,Q为坐标平面上一动点,
7、PA垂直于x轴,QB垂直于y轴,垂足分别是A、B (1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得OBQ与OAP面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值图2图1解:(1)设正比例函数解析式为,将点M(,)坐标代入得,所以正比例函数解析式为 2分同样可得,反比例函数解析式为 3分(2)当点Q在直线DO上运动时,设点Q的坐标为, 4分于是,而,所以有,解得 6分所以点Q的坐标为和 7分(3)因
8、为四边形OPCQ是平行四边形,所以OPCQ,OQPC,而点P(,)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值8分因为点Q在第一象限中双曲线上,所以可设点Q的坐标为,由勾股定理可得,所以当即时,有最小值4,又因为OQ为正值,所以OQ与同时取得最小值,所以OQ有最小值2 9分 由勾股定理得OP,所以平行四边形OPCQ周长的最小值是10分点评 本题中的(1)、(2)小题相对较简单,问题(3)求平行四边形周长的最小值,注意到OP的长为定长,只需求邻边OQ的最小值,通过勾股定理、配方求解。其实本题还有另外两种解法:,即OQ的最小值为4。反比例函数的一条对称轴
9、为一、三象限的角平分线,即直线y=x,所以取到最小值的点Q只能是反比例函数与直线y=x在第一象限的交点,同样可求得OQ的最小值为4。7(2010年宁德市)如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM. 求证:AMBENB; 当M点在何处时,AMCM的值最小;当M点在何处时,AMBMCM的值最小,并说明理由; 当AMBMCM的最小值为时,求正方形的边长.EA DB CNM解:ABE是等边三角形,BABE,ABE60.MBN60,MBNABNABEABN.即ABMEBN.又MBNB,AMBENB(S
展开阅读全文