书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型中考数学中的几何最值问题.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5698609
  • 上传时间:2023-05-04
  • 格式:DOC
  • 页数:19
  • 大小:577.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《中考数学中的几何最值问题.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中考 数学 中的 几何 问题 下载 _各科综合资料_初中
    资源描述:

    1、中考数学中的几何最值问题在近几年各地中考中,几何最值问题屡屡受到命题者关注,此类问题不仅涉及平面几何的基础知识,还涉及几何图形的性质、平面直角坐标系、方程与不等式、函数知识等。因此一批立意新颖、构造精巧、考点突出的新题、活题脱颖而出。这类试题较好地考查了同学们的几何探究、推理能力的要求及数学思想方法的运用。本节课以近几年的全国各地的中考题为例加以讲解,希对同学们的备考有所帮助。OyxACB1(2009年潍坊市)已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是_ 解:取AB的中点D,连结OD、CD、OC,则OD=,且CDAB,

    2、CD=,当C,D,O三点共线时,OC=OD+CD,否则OCOD+CD,OC长的最大值是+。点评 本题求一条线段的最大值,关键是抓住斜边长度确定,斜边上的中线长也确定,利用三角形两边之和大于第三边,寻找突破口从而求解。2(2008年兰州)如图,在中,经过点且与边相切的动圆与分别相交于点,则线段长度的最小值是( )A B C5 D4.8解:易知ABC是直角三角形,所以EF是圆的直径,设切点是D,因为直径是圆中最长的弦,所以EFCD,作CHAB于点H,则CDCH,所以有EFCH,即长度的最小值是CH,利用面积方法易得CH=4.8。所以线段长度的最小值是4.8,故选D。点评 本题求一条线段的最小值,通

    3、过转化后利用垂线段最短求解。3(2009年四川达州)在边长为2的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则PBQ周长的最小值为_(结果不取近似值)。解:B、Q在直线AC同侧,动点P只能在AC上运动。PBQ中,B、Q为定点,故BQ长度不变,要使PBQ周长最小,应使动点P到两定点B、Q之和PB+PQ最小。直线AC是正方形的对称轴,点Q关于对角线AC的对称点Q一定落在边CD上,如图所示,当B、P、 Q共线时PB+PQ=PB+PQ=BQ=取最小值,则PBQ周长的最小值为+1。点评 本题有一定的难度,PBQ周长的最小值问题转为求一个动点到两个定点的距离和的最小值问

    4、题,通过作对称点的方法,当三点共线时,两条线段和PBQ周长的最小。4(2010年苏州)如图,已知A、B两点的坐标分别为(2,0)、(0,2),C的圆心坐标为(1,0),半径为1若D是C上的一个动点,线段DA与y轴交于点E,则ABE面积的最小值是( ) A2 B1 C D解:当AD为C的切线,切点为D时,OE最长,BE最短,此时ABE面积最小,易证AOEADC,所以,可求得OE=,于是BE=2-,从而ABE面积的最小值是。选D。点评 本题求面积的最小值,由于三角形的高确定,因此只要求底(即一条线段)的最小值即可,根据圆的性质,易知AD处于极端位置(切线)时,所求三角形的面积最小。5(2010年天

    5、津市)在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在轴、轴的正半轴上,D为边OB的中点.(1)若为边上的一个动点,当的周长最小时,求点的坐标;(2)若、为边上的两个动点,且,当四边形的周长最小时,求点、的坐标.温馨提示 如图可以作点D关于x轴的对称点D,连接C D与x轴交于点E,的周长是最小的。这样,你只需要求出OE的长,就可以确定点E的坐标了。yBODCAxEyBODCAx解:(1)如图,作点D关于轴的对称点,连接与轴交于点E,连接.若在边上任取点(与点E不重合),连接、.由,可知的周长最小. 在矩形中,为的中点,yBODCAxE ,. OEBC, RtRt,有. . 点的坐标

    6、为(1,0). (2)如图,作点关于轴的对称点,在边上截取,连接与轴交于点,在上截取. GCEF, 四边形为平行四边形,有.又 、的长为定值,yBODCAxEGF 此时得到的点、使四边形的周长最小. OEBC, RtRt, 有 . . . 点的坐标为(,0),点的坐标为(,0)点评 本题(1)有一个温馨提示,而问题(2)要使四边形CDEF的周长最小,注意到DC、EF的长为定值,故只需DE+CF最小,用轴对称及平移方法设法将DE、CF集中到一条直线上解决问题。6(2009年郴州市)如图1,已知正比例函数和反比例函数的图像都经过点M(2,1),且P(1,2)为双曲线上的一点,Q为坐标平面上一动点,

    7、PA垂直于x轴,QB垂直于y轴,垂足分别是A、B (1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得OBQ与OAP面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值图2图1解:(1)设正比例函数解析式为,将点M(,)坐标代入得,所以正比例函数解析式为 2分同样可得,反比例函数解析式为 3分(2)当点Q在直线DO上运动时,设点Q的坐标为, 4分于是,而,所以有,解得 6分所以点Q的坐标为和 7分(3)因

    8、为四边形OPCQ是平行四边形,所以OPCQ,OQPC,而点P(,)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值8分因为点Q在第一象限中双曲线上,所以可设点Q的坐标为,由勾股定理可得,所以当即时,有最小值4,又因为OQ为正值,所以OQ与同时取得最小值,所以OQ有最小值2 9分 由勾股定理得OP,所以平行四边形OPCQ周长的最小值是10分点评 本题中的(1)、(2)小题相对较简单,问题(3)求平行四边形周长的最小值,注意到OP的长为定长,只需求邻边OQ的最小值,通过勾股定理、配方求解。其实本题还有另外两种解法:,即OQ的最小值为4。反比例函数的一条对称轴

    9、为一、三象限的角平分线,即直线y=x,所以取到最小值的点Q只能是反比例函数与直线y=x在第一象限的交点,同样可求得OQ的最小值为4。7(2010年宁德市)如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM. 求证:AMBENB; 当M点在何处时,AMCM的值最小;当M点在何处时,AMBMCM的值最小,并说明理由; 当AMBMCM的最小值为时,求正方形的边长.EA DB CNM解:ABE是等边三角形,BABE,ABE60.MBN60,MBNABNABEABN.即ABMEBN.又MBNB,AMBENB(S

    10、AS). 5分当M点落在BD的中点时,AMCM的值最小. 7分如图,连接CE,当M点位于BD与CE的交点处时,AMBMCM的值最小. 9分FEA DB CNM理由如下:连接MN.由知,AMBENB,AMEN.MBN60,MBNB,BMN是等边三角形.BMMN.AMBMCMENMNCM. 10分根据“两点之间线段最短”,得ENMNCMEC最短当M点位于BD与CE的交点处时,AMBMCM的值最小,即等于EC的长.11分过E点作EFBC交CB的延长线于F,EBF906030.设正方形的边长为x,则BFx,EF.在RtEFC中,EF2FC2EC2,()2(xx)2. 12分解得,x(舍去负值).正方形

    11、的边长为. 13分点评 此题中第(2)小题将线段和的最小值问题转化为“两点之间,线段最短”问题,特别是第(2)小题,更是利用了BM绕点B逆时针旋转60得到BMN是等边三角形的特殊结构,将三条线段的和转化为“两点之间,线段最短”问题,再结合图形的特殊对应结构进行分析,从而确定AMBMCM取最小值时,点M的位置,在第(2)小题的基础上,第(3)小题显而易见可转化为RtEFC来解决。在动转化为静的过程中,对同学们的思维能力提出了更高的要求。8(2010年通化市)如图,四边形ABCD中,ADCD,DABACB90,过点D作DEAC,垂足为F,DE与AB相交于点E(1)求证:ABAFCBCD;(2)已知

    12、AB15 cm,BC9 cm,P是射线DE上的动点设DPx cm(),四边形BCDP的面积为y cm2求y关于x的函数关系式;当x为何值时,PBC的周长最小,并求出此时y的值解: AD=CD,DEAC, DE垂直平分AC,AF=CF, DFA=DFC=90,DAF=DCF。 DAB=DAF+CAB=90ABCDEFP CAB+B=90,DCF=DAF=B 在RtDCF和RtABC中,DFC=ACB=90,DCF=BDCFABC. ABAF=CBCD AB=15, BC=9, ACB=90, AC=CF=AF=6. y=(x+9)6=3x+27(x0). BC=9(定值),PBC的周长最小,就是

    13、PB+PC最小.由知,点C关于直线DE的对称点是A, PB+PC=PB+PA,故只要求PB+PA最小. 显然当P,A,B三点共线时PA+PB最小.此时DP=DE, PA+PB=AB. 由知ADF=FAE, DFA=ACB=90 得DAFABC. 由EFBC,得AE=BE=AB=,EF=.AFBC=ADAB,即69=AD15. AD=10. 在RtADF中,AD=10,AF=6, DF=8. DE=DF+FE=8+= 当x=时,PBC的周长最小,此时y=. 点评 此题中的第小题对学生有较大的迷惑性,问题是用函数研究运动变化图形中的数量关系,进而建立函数关系式;问题从表面上看似乎要用到问题的结论,

    14、易使学生的思维从函数关系式入手探求PBC的周长最小值的陷阱,此问构思巧妙,需要学生利用几何方法探求PBC的周长最小值,并求出x和y的值.问题动静结合,较好地考查了学生分析问题、解决问题的能力.9(2010年济南)如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为,抛物线的对称轴l与直线BD交于点C、与x轴交于点E求A、B、C三个点的坐标点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN求证:AN=BMDCMNOABPlyE在点P运动的过程中,四边形AMNB的

    15、面积有最大值还是有最小值?并求出该最大值或最小值.x解:令,解得:, A(1,0),B(3,0)2分=,抛物线的对称轴为直线x=1,将x=1代入,得y=2,C(1,2). 3分在RtACE中,tanCAE=,CAE=60,由抛物线的对称性可知l是线段AB的垂直平分线,AC=BC,ABC为等边三角形, 4分AB= BC =AC = 4,ABC=ACB= 60,又AM=AP,BN=BP,BN = CM, ABNBCM, AN=BM. 5分四边形AMNB的面积有最小值 6分设AP=m,四边形AMNB的面积为S,由可知AB= BC= 4,BN = CM=BP,SABC=42=,CM=BN= BP=4m

    16、,CN=m, 过M作MFBC,垂足为F,则MF=MCsin60=,SCMN=,7分S=SABCSCMN=()= 8分m=2时,S取得最小值3. 9分点评 此题的第小题将函数与圆的有关知识蕴涵于几何图形中,以较为新颖的方式出现,使问题更具有综合性.将不规则的四边形转化为三角形来解决,充分体现了转化思想在解题中的应用,由于四边形AMNB的面积随着点P的位置变化而变化,所以用函数的观点,从函数关系式入手探求四边形AMNB的最小值.本题较好地体现了对学生合情理及转化能力的考查,通过建立面积与动点坐标之间的函数关系式,利用函数知识求解.10(2009年恩施)恩施州自然风光无限,特别是以“雄、奇、秀、幽、

    17、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km,A、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图11(1)是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和S1=PA+PB; 图11(2)是方案二的示意图(点A关于直线X的对称点是A,连接BA交直线X于点P),P到A、B的距离之和S2=PA+PB. (1).求S1 、S2 ,并比较它们的大小.(2).请你说明S2=PA+PB的值为最小.(3).拟建的恩施到张家界高速公路Y与沪渝高速公路垂

    18、直,建立如图所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q 组成的四边形的周长最小.并求出这个最小值. 解:图11(1)中过B作BCAP,垂足为C,则PC=40,又AP=10,AC=30 1分在RtABC 中,AB=50 AC=30 BC=40 BP=S1= 2分图11(2)中,过B作BCAA垂足为C,则AC=50,又BC=40BA=由轴对称知:PA=PAS2=BA= 3分 4分(2)如 图11(2),在公路上任找一点M,连接MA,MB,MA,由轴对称知MA=MAMB+MA=MB+MAABS2=BA为最小 7分(3)过A作关于X轴的对称点A, 过B作关于Y轴的对称点B,连接AB,交X轴于点P, 交Y轴于点Q,则P,Q即为所求 分过A、 B分别作X轴、Y轴的平行线交于点G,AB=所求四边形的周长为 10分点评 本题求四边形周长的最小值,由于AB的长确定,因此只要求三条线段和的最小值,利用轴对称将三条线段转移到山同一条直线上,再根据两点之间线段最短原理确定最小值。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:中考数学中的几何最值问题.doc
    链接地址:https://www.163wenku.com/p-5698609.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库