极坐标参数方程高考练习含答案(非常好的练习题)(DOC 40页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《极坐标参数方程高考练习含答案(非常好的练习题)(DOC 40页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极坐标参数方程高考练习含答案非常好的练习题DOC 40页 坐标 参数 方程 高考 练习 答案 非常好 练习题 DOC 40 下载 _各科综合_高中
- 资源描述:
-
1、WORD格式-专业学习资料-可编辑 极坐标与参数方程高考精练(经典39题)1在极坐标系中,以点为圆心,半径为3的圆与直线交于两点.(1)求圆及直线的普通方程.(2)求弦长.2在极坐标系中,曲线,过点A(5,)(为锐角且)作平行于的直线,且与曲线L分别交于B,C两点.()以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;()求|BC|的长.3在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点(1)写出直线的参数方程和曲线的直角坐标方程;(2)求证直线和曲线相交于两点、,并求的值4已
2、知直线的参数方程是,圆C的极坐标方程为(1)求圆心C的直角坐标;(2)由直线上的点向圆C引切线,求切线长的最小值5在直角坐标系xOy中,直线的参数方程为.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.()求圆C在直角坐标系中的方程;()若圆C与直线相切,求实数a的值.6在极坐标系中,O为极点,已知圆C的圆心为,半径r=1,P在圆C上运动。 (I)求圆C的极坐标方程;(II)在直角坐标系(与极坐标系取相同的长度单位,且以极点O为原点,以极轴为x轴正半轴)中,若Q为线段OP的中点,求点Q轨迹的直角坐标方程。7在极坐标系中,极点为坐标原点O,
3、已知圆C的圆心坐标为,半径为,直线的极坐标方程为.(1)求圆C的极坐标方程;(2)若圆C和直线相交于A,B两点,求线段AB的长.8平面直角坐标系中,将曲线(为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线 以坐标原点为极点,的非负半轴为极轴,建立的极坐标中的曲线的方程为,求和公共弦的长度9在直角坐标平面内,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是(为参数)。求极点在直线上的射影点的极坐标;若、分别为曲线、直线上的动点,求的最小值。10已知极坐标系下曲线的方程为,直线经过点,倾
4、斜角.()求直线在相应直角坐标系下的参数方程; ()设与曲线相交于两点,求点到两点的距离之积. 11在直角坐标系中,曲线的参数方程为以坐标原点为极点,轴的正半轴为极轴的极坐标系中曲线的极坐标方程为()分别把曲线化成普通方程和直角坐标方程;并说明它们分别表示什么曲线()在曲线上求一点,使点到曲线的距离最小,并求出最小距离12设点分别是曲线和上的动点,求动点间的最小距离.13已知A是曲线=3cos上任意一点,求点A到直线cos=1距离的最大值和最小值。14已知椭圆C的极坐标方程为,点F1,F2为其左,右焦点,直线的参数方程为(1)求直线和曲线C的普通方程; (2)求点F1,F2到直线的距离之和.1
5、5已知曲线,直线将直线的极坐标方程化为直角坐标方程;设点在曲线上,求点到直线距离的最小值16已知的极坐标方程为点的极坐标是.()把的极坐标方程化为直角坐标参数方程,把点的极坐标化为直角坐标()点M()在上运动,点是线段的中点,求点运动轨迹的直角坐标方程17在直角坐标系xOy中,直线l的参数方程为:(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为r=cos(+),求直线l被曲线C所截的弦长18已知曲线的极坐标方程为,曲线的方程是, 直线的参数方程是: .(1)求曲线的直角坐标方程,直线的普通方程;(2)求曲线上的点到直线距离的最小值. 19在直接坐标系xOy中,直
6、线的方程为x-y+4=0,曲线C的参数方程为(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线的距离的最小值20经过作直线交曲线:(为参数)于、两点,若成等比数列,求直线的方程.21已知曲线的极坐标方程是,曲线的参数方程是是参数)(1)写出曲线的直角坐标方程和曲线的普通方程;(2)求的取值范围,使得,没有公共点22设椭圆的普通方程为(1)设为参数,求椭圆的参数方程;(2)点是椭圆上的动点,求的取值范围. 23在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标
7、系,已知曲线,已知过点的直线的参数方程为:直线与曲线分别交于(1)写出曲线和直线的普通方程;(2)若成等比数列,求的值. 24已知直线的参数方程是,圆C的极坐标方程为(I)求圆心C的直角坐标;()由直线上的点向圆C引切线,求切线长的最小值25在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程为(为对数),求曲线截直线所得的弦长.26已知曲线C1:(为参数),曲线C2:(t为参数)(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(2)若把C1,C2上各点的纵坐标都拉伸为原来的两倍,分别得到曲线写出的参数方程与公共点的个数和C公共
8、点的个数是否相同?说明你的理由27求直线被曲线所截的弦长。28已知圆的方程为求圆心轨迹C的参数方程;点是(1)中曲线C上的动点,求的取值范围。29在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角.(I)写出圆的标准方程和直线的参数方程;()设直线与圆相交于两点,求的值.30 已知P为半圆C: (为参数,)上的点,点A的坐标为(1,0), O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为。(I)以O为极点,轴的正半轴为极轴建立极坐标系,求点M的极坐标;(II)求直线AM的参数方程。31在直角坐标系xOy中,直线的参数方程为(为参数)在极坐标系(与直角坐标系xOy取相同的
9、长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为=2sin()求圆C的直角坐标方程;()设圆C与直线交于点A,B若点的坐标为(3,),求与32已知A,B两点是椭圆 与坐标轴正半轴的两个交点.(1)设为参数,求椭圆的参数方程;(2)在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大,并求此最大值.33已知曲线C: (t为参数), C:(为参数)。()化C,C的方程为普通方程,并说明它们分别表示什么曲线;(II)若C上的点P对应的参数为,Q为C上的动点,求中点到直线(t为参数)距离的最大值。34在直角坐标系中,曲线C1的参数方程为,M是曲线C1上的动点,点P满足(1)求点P的轨
10、迹方程C2;(2)以O为极点,x轴正半轴为极轴的极坐标系中,射线与曲线C1、C2交于不同于极点的A、B两点,求|AB|.35设直线经过点,倾斜角,()写出直线的参数方程;()设直线与圆相交与两点A,B.求点P到A、B两点的距离的和与积.36在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系. 已知点的极坐标为,曲线的参数方程为()求直线的直角坐标方程;()求点到曲线上的点的距离的最小值37在直角坐标系中, 过点作倾斜角为的直线与曲线相交于不同的两点.() 写出直线的参数方程; () 求 的取值范围.38在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系
11、xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。(1)求圆C的直角坐标方程;(2)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。39在平面直角坐标系中,曲线的参数方程为(,为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆已知曲线上的点对应的参数,射线与曲线交于点(I)求曲线,的方程;(II)若点,在曲线上,求的值-学习资料分享-WORD格式-专业学习资料-可编辑 参考答案1(1) 直线 (2) 【解析】(1)圆C在直角坐标系中的圆心坐标为(0,2),半径为3,所以其普通方程为.直线l由于过原点,并且倾斜角为
12、,所以其方程为.(2)因为圆心C到直线的距离为1,然后利用弦长公式可求出|AB|的值(1) .4分直线 .8分(2) 因为 所以2() () 【解析】(I)先把曲线方程化成普通方程,转化公式为.(II)直线方程与抛物线方程联立消y之后,借助韦达定理和弦定公式求出弦长即可()由题意得,点的直角坐标为 (1分) 曲线L的普通方程为: (3分)直线l的普通方程为: (5分)()设B()C() 联立得 由韦达定理得, (7分) 由弦长公式得3解:(1)点的直角坐标是,直线倾斜角是, (1分)直线参数方程是,即, (3分)即,两边同乘以得,曲线的直角坐标方程曲线的直角坐标方程为;(5分)(2)代入,得,
13、直线的和曲线相交于两点、,(7分)设的两个根是, (10分)【解析】略4(I), (2分), (3分)即,(5分)(II)方法1:直线上的点向圆C 引切线长是, (8分)直线上的点向圆C引的切线长的最小值是 (10分)方法2:, (8分)圆心C到距离是,直线上的点向圆C引的切线长的最小值是【解析】略7()由得,分结合极坐标与直角坐标的互化公式得,即 分()由直线的参数方程化为普通方程,得,. 分结合圆C与直线相切,得,解得.【解析】略8解:()设圆上任一点坐标为,由余弦定理得所以圆的极坐标方程为 (5分) ()设则,在圆上,则的直角坐标方程为 (10分)【解析】略10【解析】略11解:曲线(为
14、参数)上的每一点纵坐标不变,横坐标变为原来的一半得到, 然后整个图象向右平移个单位得到, 最后横坐标不变,纵坐标变为原来的2倍得到, 所以为, 又为,即, 所以和公共弦所在直线为, 所以到距离为, 所以公共弦长为 【解析】略12(1)极坐标为(2)【解析】解:(1)由直线的参数方程消去参数得:,则的一个方向向量为,设,则,又,则,得:,将代入直线的参数方程得,化为极坐标为。(2),由及得,设,则到直线的距离,则。17() (), , 【解析】18,【解析】22 【解析】略23最大值为2,最小值为0【解析】将极坐标方程转化成直角坐标方程:=3cos即:x2y2=3x,(x)2y2= 3cos=1
15、即x=1 6直线与圆相交。所求最大值为2, 8最小值为0。 1024(1)(2)【解析】() 直线普通方程为; 3分曲线的普通方程为 6分() ,, 7分点到直线的距离 8分点到直线的距离 9分 10分25(2)【解析】: 设, (其中, 当时, 点到直线的距离的最小值为。32()的直角坐标方程是,的直角坐标为(2,0)()运动轨迹的直角坐标方程是.【解析】以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位()由得,将,代入可得的直角坐标方程是,的直角坐标参数方程可写为点的极坐标是,由,知点的直角坐标为(2,0). ()点M()在上运动,所点是线段的中点,所以,所以,
展开阅读全文