中考数学二次函数综合练习题附详细答案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学二次函数综合练习题附详细答案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 二次 函数 综合 练习题 详细 答案 下载 _各科综合资料_初中
- 资源描述:
-
1、一、二次函数 真题与模拟题分类汇编(难题易错题)1如图,抛物线yax2+bx+3(a0)的对称轴为直线x1,抛物线交x轴于A、C两点,与直线yx1交于A、B两点,直线AB与抛物线的对称轴交于点E(1)求抛物线的解析式(2)点P在直线AB上方的抛物线上运动,若ABP的面积最大,求此时点P的坐标(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标【答案】(1)yx22x+3;(2)点P(,);(3)符合条件的点D的坐标为D1(0,3),D2(6,3),D3(2,7)【解析】【分析】(1)令y0,求出点A的坐标,根据抛物线的对称轴是x1,求出点C的坐标
2、,再根据待定系数法求出抛物线的解析式即可;(2)设点P(m,m22m+3),利用抛物线与直线相交,求出点B的坐标,过点P作PFy轴交直线AB于点F,利用SABPSPBF+SPFA,用含m的式子表示出ABP的面积,利用二次函数的最大值,即可求得点P的坐标;(3)求出点E的坐标,然后求出直线BC、直线BE、直线CE的解析式,再根据以点B、E、C、D为顶点的四边形是平行四边形,得到直线D1D2、直线D1D3、直线D2D3的解析式,即可求出交点坐标【详解】解:(1)令y0,可得:x10,解得:x1,点A(1,0),抛物线yax2+bx+3(a0)的对称轴为直线x1,1213,即点C(3,0), ,解得
3、: 抛物线的解析式为:yx22x+3;(2)点P在直线AB上方的抛物线上运动,设点P(m,m22m+3),抛物线与直线yx1交于A、B两点, ,解得:, 点B(4,5),如图,过点P作PFy轴交直线AB于点F,则点F(m,m1),PFm22m+3m+1m23m+4,SABPSPBF+SPFA(m23m+4)(m+4)+(m23m+4)(1m)-(m+ )2+ ,当m时,P最大,点P(,).(3)当x1时,y112,点E(1,2),如图,直线BC的解析式为y5x+15,直线BE的解析式为yx1,直线CE的解析式为yx3,以点B、C、E、D为顶点的四边形是平行四边形,直线D1D3的解析式为y5x+
4、3,直线D1D2的解析式为yx+3,直线D2D3的解析式为yx9,联立 得D1(0,3),同理可得D2(6,3),D3(2,7),综上所述,符合条件的点D的坐标为D1(0,3),D2(6,3),D3(2,7)【点睛】本题考查二次函数的综合应用,解决第(2)小题中三角形面积的问题时,找到一条平行或垂直于坐标轴的边是关键;对于第(3)小题,要注意分类讨论、数形结合的运用,不要漏解2童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价元,每星期的销售量为件.(1)降价后
5、,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元【解析】【分析】(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题【详解】解:(1)根据题意得,(60x)10+1003100,解得:x40,604020元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w(x30)(60x)10+10010x2
6、+1000x2100010(x50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型3如图,抛物线交轴于,两点,交轴于点C,与过点C且平行于x轴的直线交于另一点,点P是抛物线上一动点(1)求抛物线解析式及点D的坐标;(2)点在轴上,若以,为顶点的四边形是平行四边形,求此时点的坐标;(3)过点作直线CD的垂线,垂足为,若将沿翻折,点的对应点为是否存在点,使恰好落在轴上?若存在,求出此时点P的坐标;若不存在,说明理由 【答案】(1);点坐
7、标为; (2)P1(0,2); P2(,-2);P3(,-2) ; (3)满足条件的点有两个,其坐标分别为:(, ),(,)【解析】【分析】1)用待定系数法可得出抛物线的解析式,令y=2可得出点D的坐标(2)分两种情况进行讨论,当AE为一边时,AEPD,当AE为对角线时,根据平行四边形对顶点到另一条对角线距离相等,求解点P坐标(3)结合图形可判断出点P在直线CD下方,设点P的坐标为(,),分情况讨论,当P点在y轴右侧时,当P点在y轴左侧时,运用解直角三角形及相似三角形的性质进行求解即可【详解】解:(1)抛物线经过,两点,解得:,抛物线解析式为:; 当时,解得:,(舍),即:点坐标为 (2),两
8、点都在轴上,有两种可能:当为一边时,此时点与点重合(如图1),当为对角线时,点、点到直线(即轴)的距离相等,点的纵坐标为(如图2),把代入抛物线的解析式,得:,解得:,点的坐标为,综上所述:; ; (3)存在满足条件的点,显然点在直线下方,设直线交轴于,点的坐标为(,),当点在轴右侧时(如图3),又,,又,即,点的坐标为(,), 当点在轴左侧时(如图4),此时,(),又,又,此时,点的坐标为(,) 综上所述,满足条件的点有两个,其坐标分别为:(,),(,)【点睛】此题考查二次函数综合题,解题关键在于运用待定系数法的出解析式,难度较大4如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个
9、交点为A,且与y轴交于点C(0,5)。(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标。【答案】(1)(2)(3)P的坐标为(1,12)或(6,5)或(2,3)或(3,4)【解析】【分析】(1)由B(5,0),C(0,5),应用待定系数法即可求直线BC与抛物线的解析式。(2)构造MN关于点M横坐标的函数关系式,应用二次函数
10、最值原理求解。(3)根据S1=6S2求得BC与PQ的距离h,从而求得PQ由BC平移的距离,根据平移的性质求得PQ的解析式,与抛物线联立,即可求得点P的坐标。【详解】解:(1)设直线BC的解析式为,将B(5,0),C(0,5)代入,得,得。直线BC的解析式为。将B(5,0),C(0,5)代入,得,得。抛物线的解析式。(2)点M是抛物线在x轴下方图象上的动点,设M。点N是直线BC上与点M横坐标相同的点,N。当点M在抛物线在x轴下方时,N的纵坐标总大于M的纵坐标。MN的最大值是。(3)当MN取得最大值时,N。的对称轴是,B(5,0),A(1,0)。AB=4。由勾股定理可得,。设BC与PQ的距离为h,
11、则由S1=6S2得:,即。如图,过点B作平行四边形CBPQ的高BH,过点H作x轴的垂线交点E ,则BH=,EH是直线BC沿y轴方向平移的距离。易得,BEH是等腰直角三角形,EH=。直线BC沿y轴方向平移6个单位得PQ的解析式:或。当时,与联立,得,解得或。此时,点P的坐标为(1,12)或(6,5)。当时,与联立,得,解得或。此时,点P的坐标为(2,3)或(3,4)。综上所述,点P的坐标为(1,12)或(6,5)或(2,3)或(3,4)。5如图,在直角坐标系xOy中,二次函数y=x2+(2k1)x+k+1的图象与x轴相交于O、A两点(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图
12、象上有一点B,使AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使POB=90?若存在,求出点P的坐标,并求出POB的面积;若不存在,请说明理由【答案】(1)y=x23x。(2)点B的坐标为:(4,4)。(3)存在;理由见解析;【解析】【分析】(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。(
13、3)根据B点坐标可求出直线OB的解析式,由于OBOP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标求POB的面积时,求出OB,OP的长度即可求出BOP的面积。【详解】解:(1)函数的图象与x轴相交于O,0=k+1,k=1。这个二次函数的解析式为y=x23x。(2)如图,过点B做BDx轴于点D,令x23x=0,解得:x=0或3。AO=3。AOB的面积等于6,AOBD=6。BD=4。点B在函数y=x23x的图象上,4=x23x,解得:x=4或x=1(舍去)。又顶点坐标为:( 1.5,2.25),且2.254,x轴下方不存在B点。点B的坐标为:(4,4)。(3)存在。点B的坐标为:(
14、4,4),BOD=45,。若POB=90,则POD=45。设P点坐标为(x,x23x)。若,解得x=4 或x=0(舍去)。此时不存在点P(与点B重合)。若,解得x=2 或x=0(舍去)。当x=2时,x23x=2。点P 的坐标为(2,2)。POB=90,POB的面积为:POBO=8。6(2017南宁,第26题,10分)如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;(3
展开阅读全文