中考数学专题练习全等三角形的判定与性质(含解析).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学专题练习全等三角形的判定与性质(含解析).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 练习 全等 三角形 判定 性质 解析 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、 2019中考数学专题练习-全等三角形的判定与性质(含解析)一、单选题1.如图:在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,有下列结论:AED=CED;OE=OD;BEHHDF;BCCF=2EH;AB=FH其中正确的结论有()A.5个B.4个C.3个D.2个2.如图,在等腰RtABC中,C=90,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE连接DE、DF、EF在此运动变化过程中,下列结论:DFE是等腰直角三角形;四边形CDFE不可能为正方形;CDE与DAF不可能全等;四边形CDF
2、E的面积保持不变;CDE面积的最大值为8其中正确的结论是()A.B.C.D.3.如图,已知ACB=90,AC=BC,BECE,ADCE于点D,AD=2.5 cm,DE=1.7 cm,则BE=( )A.1 cmB.0.8 cmC.4.2 cmD.1.5 cm4.如图,在ABC中,ABC=45,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cmB.6cmC.8cmD.9cm5.如图所示,AC=CD,B=E=90,ACCD,则不正确的结论是( ) A.AC=BC+CEB.A=2C.ABCCEDD.A与D互余6.如图,E=F=90,B=C,AE=AF,则下列结论:1=2;BE=CF;
3、CD=DN;ACNABM,其中正确的有()A.4个B.3个C.2个D.1个7.如图,OAOB,OCOD,O50,D35,则AEC等于()A.60B.50C.45D.308.如图,点P是AB上任意一点,ABC=ABD,还应补充一个条件,才能推出APCAPD从下列条件中补充一个条件,不一定能推出APCAPD的是()A.BC=BDB.AC=ADC.ACB=ADBD.CAB=DAB9.下列判断不正确的是( ) A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等10.如图,已知AB=AC,AD=AE,BAC=DAE下列结论不正确的是( )
4、 A.BAD=CAEB.ABDACEC.AB=BCD.BD=CE11.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明AOC=BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等12.如图所示,两个完全相同的含30角的RtABC和RtAED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且DAB=30,以下三个结论:AFBC;ADGACF;O为BC的中点;AG=BG其中正确的个数为( ) A.1B.2C.3D.413.如图,点A,D,C,E在同一条直线上,ABEF,AB=EF,B=F,AE=10,AC=7,则CD的长为( )A.5.5B.4
5、C.4.5D.314.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作APB的平分线PC交AB于点CB.过点P作PCAB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PCAB,垂足为C二、填空题15.如图,E=F=90,B=C,AE=AF,下列结论: EM=FN,CD=DN,FAN=EAMACNABM其中正确的有_16.如图,已知ABC三个内角的平分线交于点O,延长BA到点D,使AD=AO,连接DO,若BD=BC,ABC=54,则BCA的度数为_17.如图,已知ABAC,12,BC,则BDCE请
6、说明理由:解:121BAC2_即_DAB在ABD和ACE中,B_(已知)AB_(已知)EAC_(已证)ABDACE(_)BDCE(_) 18.如图,AC是矩形ABCD的对角线,AB=2,BC= ,点E,F分别是线段AB,AD上的点,连接CE,CF,当BCE=ACF,且CE=CF时,AE+AF=_.19.如图,以RtABC的斜边AB为一边在ABC同侧作正方形ABEF点O为AE与BF的交点,连接CO若CA=2,CO=,那么CB的长为_. 20.如图,在等腰直角ACB中,ACB=90,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且DOE=90,DE交OC于点P有下列结论:DEO=45;AO
7、DCOE;S四边形CDOE=SABC;OD2=OPOC其中正确的结论序号为_(把你认为正确的都写上)21.如图,已知点C是AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为_OCE=OCF;OEC=OFC;EC=FC;EFOC 三、解答题22.如图,已知PBAB , PCAC,且PB =PC,D 是AP上的一点,求证: 23.已知:如图,ABAE,12,BE.求证:BCED.24.如图,点E、F分别在正方形ABCD的边DC、BC上,AGEF,垂足为G,且AGAB,则EAF为多少度25.已知如图,D、E分别在AB和
8、AC上,CD、BE交于O,AD=AE,BD=CE求证:OB=OC 26.如图,ABC中,ACB=90,延长AC到D,使得CD=CB,过点D作DEAB于点E,交BC于F求证:AB=DF27.已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EAAF求证:DEBF28.如图,在ABF与CDE中,AB=CD,BF=DE,点A,E,F,C在同一条直线上,AE=CF,求证:ABCD 29.已知:如图,AD=BC,AB=DC,求证:A=C 答案解析部分一、单选题1.如图:在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE
9、交BF于点O,有下列结论:AED=CED;OE=OD;BEHHDF;BCCF=2EH;AB=FH其中正确的结论有()A.5个B.4个C.3个D.2个【答案】B 【考点】全等三角形的判定与性质 【解析】【解答】;解:四边形ABCD是矩形,BAD=ABC=C=ADC=90,AB=DC,ADBC,ADE=CED,BAD的平分线交BC于点E,BAE=DAH=45,ABE和ADH是等腰直角三角形,AE=AB,AD=AH,AD=AB=AH,AD=AE,AB=AH=DH=DC,ADE=AED,AED=CED,正确;DAH=ADH=45,ADE=AED=67.5,BAE=45,AHB=ABH=67.5,OHE
10、=67.5,OHE=AED,OE=OH,同理:OD=OH,OE=OD,正确;ABH=AHB=67.5,HBE=FHD,在BEH和HDF中,BEHHDF(ASA),正确;BCCF=2HE正确,过H作HKBC于K,可知KC=BC,HK=KE,由上知HE=EC,BC=KE十Ec,又KE=HK=FC,HE=EC,故BC=HK+HE,BC=2HK+2HE=FC+2HE正确;不正确;故选:B【分析】先证明ABE和ADH等腰直角三角形,得出AD=AE,AB=AH=DH=DC,得出ADE=AED,即可得出正确;先证出OE=OH,同理:OD=OH,得出OE=OD,正确;由ASA证出BEHHDF,得出正确;过H作
11、HKBC于K,可知KC=BC,HK=KE,得出BC=HK+HE,BC=2HK+2HE=FC+2HE,得出正确2.如图,在等腰RtABC中,C=90,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE连接DE、DF、EF在此运动变化过程中,下列结论:DFE是等腰直角三角形;四边形CDFE不可能为正方形;CDE与DAF不可能全等;四边形CDFE的面积保持不变;CDE面积的最大值为8其中正确的结论是()A.B.C.D.【答案】D 【考点】全等三角形的判定与性质 【解析】【解答】解:连接CF;ABC是等腰直角三角形,FCB=A=45,CF=AF=FB;AD=CE,ADFC
12、EF;EF=DF,CFE=AFD;AFD+CFD=90,CFE+CFD=EFD=90,EDF是等腰直角三角形当D、E分别为AC、BC中点时,四边形CDFE是正方形ADFCEF,SCEF=SADFS四边形CEFD=SAFC 由于DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DFAC时,DE最小,此时DF=BC=4DE=DF=4;当CEF面积最大时,此时DEF的面积最小此时SCEF=S四边形CEFDSDEF=SAFCSDEF=168=8则结论正确的是故选D【分析】作常规辅助线连接CF,由SAS定理可证CFE和ADF全等,从而可证DFE=90,DF=EF所以DEF是等腰直角三角形;由割补
13、法可知四边形CDFE的面积保持不变;DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE取最小值4,CDE最大的面积等于四边形CDEF的面积减去DEF的最小面积3.如图,已知ACB=90,AC=BC,BECE,ADCE于点D,AD=2.5 cm,DE=1.7 cm,则BE=( )A.1 cmB.0.8 cmC.4.2 cmD.1.5 cm【答案】B 【考点】全等三角形的判定与性质 【解析】【分析】根据BECE,ADCE得E=ADC,则CAD+ACD=90,再由ACB=90,得BCE+ACD=90,则BCE=CAD,从而证出BCECAD,进而得出BE的长【解答】ADCE,E=A
14、DC=90,即CAD+ACD=90,ACB=90,BCE+ACD=90,BCE=CAD,又AC=BC,BCECAD(AAS),CE=AD,BE=CD,AD=2.5cm,DE=1.7cm,BE=CD=CE-DE=2.5-1.7=0.8cm故选B【点评】本题考查了全等三角形的判定和性质,是基础知识要熟练掌握4.如图,在ABC中,ABC=45,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cmB.6cmC.8cmD.9cm【答案】C 【考点】全等三角形的判定与性质 【解析】【分析】F是高AD和BE的交点,ADC=ADB=AEF=90,CAD+AFE=90,DBF+BFD=90,AFE
15、=BFD,CAD=FBD,ADB=90,ABC=45,BAD=45=ABD。AD=BD,在DBF和DAC中,FBDCAD,FDBCDA,DBAD,DBFDAC。BF=AC=8cm.故选C.5.如图所示,AC=CD,B=E=90,ACCD,则不正确的结论是( ) A.AC=BC+CEB.A=2C.ABCCEDD.A与D互余【答案】A 【考点】全等三角形的判定与性质 【解析】【解答】解:B=E=90, A+1=90,D+2=90,ACCD,1+2=90,A=2,故B正确;A+D=90,故D正确;在ABC和CED中,ABCCED(AAS),故C正确;AB=CE,DE=BC,BE=AB+DE,故A错误
16、故选:A【分析】利用同角的余角相等求出A=2,再利用“角角边”证明ABC和CDE全等,根据全等三角形对应边相等,对应角相等,即可解答6.如图,E=F=90,B=C,AE=AF,则下列结论:1=2;BE=CF; CD=DN;ACNABM,其中正确的有()A.4个B.3个C.2个D.1个【答案】B 【考点】全等三角形的判定与性质 【解析】【分析】由E=F=90,B=C,AE=AF,根据直角三角形全等的判定得到RtABERtACF,则BE=C,EAB=FAC得到正确;易证RtAEMRtAFN,得到AM=AN,则MC=BN,易证得ACNABM,得到正确;DMCDMB,则DC=DB,得到错误【解答】如图
展开阅读全文