最新中考数学压轴题专练-二次函数压轴题综合(含答案)(DOC 17页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新中考数学压轴题专练-二次函数压轴题综合(含答案)(DOC 17页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新中考数学压轴题专练-二次函数压轴题综合含答案DOC 17页 最新 中考 数学 压轴 题专练 二次 函数 综合 答案 DOC 17 下载 _各科综合资料_初中
- 资源描述:
-
1、中考数学压轴题专练 二次函数压轴题综合考点一:距离之和最小问题1.如图,抛物线y=x2+bx2与x轴交于A、B两点,与y轴交于C点,且A(一1,0)求抛物线的解析式及顶点D的坐标;判断ABC的形状,证明你的结论;点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值解:(1)b = 解析式y=x2-x-2. 顶点D (, -).(2)当x = 0时y = -2, C(0,-2),OC = 2。B (4,0) OA = 1, OB = 4, AB = 5. ABC是直角三角形.(3)作出点C关于x轴的对称点C,则C(0,2),OC=2,连接CD交x轴于点M,根据轴对称性及两点之间线段
2、最短可知,MC + MD的值最小。解法一:设抛物线的对称轴交x轴于点E.EDy轴, OCM=EDM,COM=DEM COMDEM. ,m =解法二:设直线CD的解析式为y = kx + n ,则,解得n = 2, . . 当y = 0时, , . .2.(2016河池第26题)在平面直角坐标系中,抛物线与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,
3、请说明理由解析:(1)当中y=0时,有,解得:=3,=1,A在B的左侧,A(3,0),B(1,0)当中x=0时,则y=3,C(0,3)=,顶点D(1,4)(3)设直线AC的解析式为y=ax+c,则有:,解得:,直线AC的解析式为y=x+3假设存在,设点F(m,m+3),AFP为等腰直角三角形分三种情况(如图2所示):当PAF=90时,P(m,m3),点P在抛物线上,解得:m1=3(舍去),m2=2,此时点P的坐标为(2,5);当AFP=90时,P(2m+3,0)点P在抛物线上,解得:m3=3(舍去),m4=1,此时点P的坐标为(1,0);当APF=90时,P(m,0),点P在抛物线上,解得:m
4、5=3(舍去),m6=1,此时点P的坐标为(1,0)综上可知:在抛物线上存在点P,使得AFP为等腰直角三角形,点P的坐标为(2,5)或(1,0)3.(2016铜仁第25题)如图,抛物线(a0)经过A(-1,0),B(2,0)两点,与y轴交于点C(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当ACP的周长最小时,求出点P的坐标;(3) 点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的RtDNM与RtBOC相似,若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由解析:(1)由于抛物线 (a0)经过A(-1,0),B(2,0)两点,因此把A、B两点的
5、坐标代入 (a0),可得:;解方程组可得:,故抛物线的解析式为:,=,所以D的坐标为(,)(2)如图1,设P(,k),C(0,1),A(-1,0),B(2,0),A、B两点关于对称轴对称,连接CB交对称轴于点P,则ACP的周长最小设直线BC为y=kx+b,则:,解得:,直线BC为:当x=时,=,P(,);(3)存在如图2,过点作NFDM,B(2,0),C(0,1),OB=2,OC=1,tanOBC=,tanOCB=2,设点N(m,),FN=|m|,FD=|=|,RtDNM与RtBOC相似,MDN=OBC,或MDN=OCB;当MDN=OBC时,tanMDN=,m=(舍)或m=或m=,N(,)或(
6、,);当MDN=OCB时,tanMDN=2,m=(舍)或m=或m=,N(,)或(,);符合条件的点N的坐标(,)或(,)或(,)或(,)考点:二次函数综合题;相似三角形的判定与性质;分类讨论;压轴题4(2016湘西州第26题)如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点(1)求抛物线的解析式;(2)若点D在线段OC上,且BDDE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得BDM的周长为最小,并求BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线
7、的图象上,是否存在一个点P,使得PAD的面积最大?若存在,请求出PAD面积的最大值及此时P点的坐标;若不存在,请说明理由(2)如图1所示;BDDE,BDE=90BDC+EDO=90又ODE+DEO=90,BDC=DE0在BDC和DOE中,BDCDEOOD=AO=1D(0,1)(4)如图3所示:过点F作FGx轴,垂足为G考点二:最大长度问题5如图,已知抛物线与轴交于A (4,0) 和B(1,0)两点,与轴交于C点(1)求此抛物线的解析式;(2)设E是线段AB上的动点,作EF/AC交BC于F,连接CE,当CEF的面积是BEF面积的2倍时,求E点的坐标;xyOBCA(3)若P为抛物线上A、C两点间的
8、一个动点,过P作轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标解:(1)故所求二次函数的解析式为(2)SCEF=2 SBEF, EF/AC, ,BEFBAC, 得E点的坐标为(,0).(3)的解析式为若设点的坐标为,又点是过点所作轴的平行线与直线的交点,则点的坐标为(则有:即当时,线段取大值,此时点的坐标为(2,3)6.(2016巴彦淖尔第24题)如图所示,抛物线经过原点O与点A(6,0)两点,过点A作ACx轴,交直线y=2x2于点C,且直线y=2x2与x轴交于点D(1)求抛物线的解析式,并求出点C和点D的坐标;(2)求点A关于直线y=2x2的对称点A的坐
9、标,并判断点A是否在抛物线上,并说明理由;(3)点P(x,y)是抛物线上一动点,过点P作y轴的平行线,交线段CA于点Q,设线段PQ的长为l,求l与x的函数关系式及l的最大值解:(1)把点O(0,0),A(6,0)代入,得:,解得:,抛物线解析式为当x=6时,y=262=10,当y=0时,2x2=0,解得x=1,点C坐标(6,10),点D的坐标(1,0);(2)过点A作AFx轴于点F,点D(1,0),A(6,0),可得AD=5,在RtACD中,CD=,点A与点A关于直线y=2x2对称,AED=90,SADC=AE=510,解得AE=,AA=2AE=,DE=,AED=AFA=90,DAE=AAF,
展开阅读全文