2020中考常见最值问题总结归纳微专题一几何最值单线段最值单动点型(解析版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020中考常见最值问题总结归纳微专题一几何最值单线段最值单动点型(解析版).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 中考 常见 问题 总结 归纳 专题 几何 单线 段最值单动点型 解析
- 资源描述:
-
1、2020中考常见最值问题总结归纳微专题一:单线段最值+单动点型WORKING PLAN REPORT微专题一:单线段最值+单动点型类型一:动点轨迹-直线型考法指导动点轨迹为一条直线时,利用“垂线段最短”求最值。(1) 当动点轨迹确定时可直接运用垂线段最短求最值(2) 当动点轨迹不易确定是直线时,可通过以下三种方法进行确定观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。当某动点到某条直线的距离不变时,该动点的轨迹为直线。当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。【典例精析】例题1(2020全国初
2、三单元测试)如图,矩形中,点是矩形内一动点,且,则的最小值为_【答案】【详解】为矩形,又点到的距离与到的距离相等,即点线段垂直平分线上,连接,交与点,此时的值最小,且故答案为:【针对训练】1(2018湖北中考真题)如图,等腰RtABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQOP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()ABC1D2【答案】C【详解】连接OC,作PEAB于E,MHAB于H,QFAB于F,如图,ACB为到等腰直角三角形,AC=BC=AB=,A=B=45,O为AB的中点,OCAB,OC平分ACB,OC=OA=OB=1,OCB
3、=45,POQ=90,COA=90,AOP=COQ,在RtAOP和COQ中,RtAOPCOQ,AP=CQ,易得APE和BFQ都为等腰直角三角形,PE=AP=CQ,QF=BQ,PE+QF=(CQ+BQ)=BC=1,M点为PQ的中点,MH为梯形PEFQ的中位线,MH=(PE+QF)=,即点M到AB的距离为,而CO=1,点M的运动路线为ABC的中位线,当点P从点A运动到点C时,点M所经过的路线长=AB=1,故选C2(2017江苏中考真题)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA若点P沿AB方向从点A运动到点B,则
4、点E运动的路径长为_【答案】【详解】解:如图,由题意可知点C运动的路径为线段AC,点E运动的路径为EE,由平移的性质可知AC=EE,在RtABC中,易知AB=BC=6,ABC=90,EE=AC=,故答案为:3如图,等边三角形ABC的边长为4,点D是直线AB上一点将线段CD绕点D顺时针旋转60得到线段DE,连结BE(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长 【答案】(1)见解析;(2)【详解】解:(1)补全图形如图1所示,AD=BE,理由如下:ABC是等边三角形,AB=BC=AC,A=B=60,由旋转的性质得:ACB=DC
5、E=60,CD=CE,ACD=BCE,ACDBCE(SAS),AD=BE(2)如图2,过点A作AFEB交EB延长线于点FACDBCE,CBE=A=60,点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,ACB=CBE=60,ACEF,AFBE,AFAC,在RtACF中,CF=,CD=CF=.类型二:动点轨迹-圆或圆弧型考法指导 动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。确定动点轨迹为圆或者圆弧型的方法:(1) 动点到定点的距离不变,则点的轨迹是圆或者圆
6、弧。(2) 当某条边与该边所对的角是定值时,该角的顶点的轨迹是圆,具体运用如下;见直角,找斜边,想直径,定外心,现圆形见定角,找对边,想周角,转心角,现圆形【典例精析】例题1如图,点在半圆上,半径,点在弧上移动,连接,作,垂足为,连接,点在移动的过程中,的最小值是_【答案】【详解】如图,设AD的中点为点E,则由题意得,点H的运动轨迹在以点E为圆心,EA为半径的圆上由点与圆的位置关系得:连接BE,与圆E交于点H,则此时取得最小值,连接BDAB为半圆O的直径故答案为:【针对训练】1(2018江阴市)如图,长方形ABCD中,AB=6,BC=4,在长方形的内部以CD边为斜边任意作RtCDE,连接AE,
7、则线段AE长的最小值是_【答案】2【解析】详解:如图,点E在以点F为圆心,DF为半径的圆上运动,当A,E,F三点共线时,AE值最小,DF=6=3,在长方形ABCD中,AD=BC=4,由勾股定理得:AF=5 EF=CD=6=3,AE=AFEF=53=2,即线段AE长的最小值是2 故答案为2 2(2019陕西省中考模拟)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将EBF沿EF所在直线折叠得到EB F,连接B D,则B D的最小值是_【答案】.【详解】如图所示点B在以E为圆心EA为半径的圆上运动,当D、B、E共线时,BD的值最小,根据折叠的性质,EBFEBF
8、,B=EBF,EB=EBE是AB边的中点,AB=4,AE=EB=2AD=6,DE2,BD=22故答案为223(2019湖南省)如图,中,是内部的一个动点,且满足,则线段长的最小值为_.【答案】2:【详解】PAB+PBA=90APB=90点P在以AB为直径的弧上(P在ABC内)设以AB为直径的圆心为点O,如图接OC,交O于点P,此时的PC最短AB=6,OB=3BC=4PC=5-3=24(2020河南省)如图,在中,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )A5B6C7D8【答案】B【详解】如图,设O与AC相切于点D,连接OD,作垂
9、足为P交O于F,此时垂线段OP最短,PF最小值为,点O是AB的三等分点,O与AC相切于点D,MN最小值为,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值,,MN长的最大值与最小值的和是6故选B5(2017贵州中考真题)如图,在矩形纸片ABCD中,点E是AB的中点,点F是AD边上的一个动点,将沿EF所在直线翻折,得到,则的长的最小值是AB3CD【答案】D【详解】以点E为圆心,AE长度为半径作圆,连接CE,当点在线段CE上时,的长取最小值,如图所示,根据折叠可知:在中,的最小值故选D6(2018山东省中考模拟)如图,在RtABC中,ABC90,ACB30,BC23
10、 ,ADC与ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DECF,BE、DF相交于点P,则CP的最小值为( )A1B3C32D2【答案】D【详解】连接AD,因为ACB30,所以BCD60,因为CBCD,所以CBD是等边三角形,所以BDDC.因为DECF,EDBFCD60,所以EDBFCD,所以EBDFDC,因为FDCBDF60,所以EBDBDF60,所以BPD120,所以点P在以A为圆心,AD为半径的弧BD上,直角ABC中,ACB30,BC23,所以AB2,AC4,所以AP2.当点A,P,C在一条直线上时,CP有最小值,CP的最小值是ACAP422.故选D.7(2017四川中
11、考真题)如图,在O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE(1)求证:AC2=AEAB;(2)过点B作O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;(3)设O半径为4,点N为OC中点,点Q在O上,求线段PQ的最小值【答案】(1)证明见解析;(2)PB=PE;(3)【详解】(1)如图1,连接BC,CD为O的直径,ABCD,A=ABC,EC=AE,A=ACE,ABC=ACE,A=A,AECACB,AC2=AEAB;(2)PB=PE,理由是:如图2,连接OB,PB为O的切线,OBPB,OBP=90,PBN+OBN=90,OBN+CO
展开阅读全文