(中考真题汇编):二次函数专题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(中考真题汇编):二次函数专题.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考真题汇编 中考 汇编 二次 函数 专题 下载 _各科综合资料_初中
- 资源描述:
-
1、 真题汇编姓名:仅供参考,内容可修改中考二模数学试卷精选汇编:二次函数专题24(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)已知平面直角坐标系(如图7),直线的经过点和点.(1)求、的值;(2)如果抛物线经过点、,该抛物线的顶点为点,求的值;图7Oxy(3)设点在直线上,且在第一象限内,直线与轴的交点为点,如果,求点的坐标.24.解:(1) 直线的经过点1分1分直线的经过点1分1分 (2)由可知点的坐标为 抛物线经过点、 , 抛物线的表达式为1分抛物线的顶点坐标为1分,1分 1分(3)过点作轴,垂足为点,则轴 , 1分直线与轴的交点为点点的坐标为,又,1分,轴 1分即
2、点的纵坐标是又点在直线上点的坐标为1分24(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线与y轴交于点A,与x轴分别交于点B(-1,0)、点C(3,0),点D是抛物线的顶点.(1)求抛物线的表达式及顶点D的坐标;(2)联结AD、DC,求的面积;(3)点P在直线DC上,联结OP,若以O、P、C为顶点的三角形与ABC相似,求点P的坐标 备用图第24题图24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1) 点B(-1,0)、C(3,0)在抛物线上,解得 ( 2分)抛物线的表达式为,顶点D的坐标是(1,-4) (
3、2分)(2)A(0,-3),C(3,0),D(1,-4) , ( 2分) (1分)(3),CADAOB,OA=OC, ,即 ( 1分)若以O、P、C为顶点的三角形与ABC相似 ,且ABC为锐角三角形 则也为锐角三角形,点P在第四象限由点C(3,0),D(1,-4)得直线CD的表达式是,设()过P作PHOC,垂足为点H,则,当时,由得,解得, (2分)当时,由得,解得, ( 2分)综上得或24(本题满分12分,第(1)、(2)、(3)小题满分各4分)已知抛物线经过点、(1)求抛物线的解析式;(2)联结AC、BC、AB,求的正切值;(3)点P是该抛物线上一点,且在第一象限内,过点P作交轴于点,当点
4、在点的上方,且与相似时,求点P的坐标(第24题图)yxABCO24(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为,1分将(,)、(,)、(,)代入,得 解得 2分所以,这个二次函数的解析式为 1分(2)(,)、(,)、(,) , 2分 2分(3)过点P作,垂足为H设,则(,),当APG与ABC相似时,存在以下两种可能:1 则即 解得 1分点的坐标为 1分2 则即 解得 1分点的坐标为 1分24(本题满分12分,每小题满分各4分)图811已知平面直角坐标系(如图8),抛物线与轴交于点A、B(点A在点B左侧),与轴交于点C,顶点为D,对称轴为直线,过点C作直线的垂线,垂足为点E,
5、联结DC、BC (1)当点C(0,3)时, 求这条抛物线的表达式和顶点坐标; 求证:DCE=BCE; (2)当CB平分DCO时,求的值24(本题满分12分)已知抛物线经过点A(1,0)和B(0,3),其顶点为D.(1)求此抛物线的表达式;(2)求ABD的面积;(3)设P为该抛物线上一点,且位于抛物线对称轴右侧,作PH对称轴,垂足为H,若DPH与AOB相似,求点P的坐标.24. 解:(1)由题意得:,(2分) 解得:,(1分)所以抛物线的表达式为. (1分)(2)由(1)得D(2,1),(1分)作DTy轴于点T, 则ABD的面积=.(3分)(3)令P.(1分)由DPH与AOB相似,易知AOB=P
6、HD=90,所以或,(2分)解得:或,所以点P的坐标为(5,8),.(1分)24(本题满分12分,每小题4分)平面直角坐标系xOy中(如图8),已知抛物线经过点A(1,0)和B(3,0),与y轴相交于点C,顶点为P 图8(1)求这条抛物线的表达式和顶点P的坐标; (2)点E在抛物线的对称轴上,且EA=EC,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,MEQ=NEB,求点Q的坐标 24解:(1)二次函数的图像经过点A(1,0)和B(3,0),解得:,(2分) 这条抛物线的表达式是(1分)顶点P的坐标是(2,-1)(1分)(2)抛物线的对称轴是直
7、线,设点E的坐标是(2,m)(1分)根据题意得: ,解得:m=2,(2分)点E的坐标为(2,2)(1分)(3)解法一:设点Q的坐标为,记MN与x轴相交于点F作QDMN,垂足为D, 则,(1分)QDE=BFE=90,QED=BEF,QDEBFE,(1分),解得(不合题意,舍去),(1分),点E的坐标为(5,8)(1分)解法二:记MN与x轴相交于点F联结AE,延长AE交抛物线于点Q,AE=BE, EFAB,AEF=NEB,又AEF=MEQ,QEM=NEB,(1分)点Q是所求的点,设点Q的坐标为,作QHx轴,垂足为H,则QH=,OH=t,AH=t-1,EFx轴,EF QH,(1分)解得(不合题意,舍
展开阅读全文