书签 分享 收藏 举报 版权申诉 / 23
上传文档赚钱

类型2020年贵州省中考数学压轴题汇编解析:几何综合.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5698031
  • 上传时间:2023-05-04
  • 格式:DOC
  • 页数:23
  • 大小:512.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020年贵州省中考数学压轴题汇编解析:几何综合.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020 贵州省 中考 数学 压轴 汇编 解析 几何 综合 下载 _真题分类汇编_中考复习_数学_初中
    资源描述:

    1、2020年全国各地中考数学压轴题汇编(贵州专版)几何综合参考答案与试题解析一选择题(共6小题)1(2020贵阳)如图,在菱形ABCD中,E是AC的中点,EFCB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A24 B18 C12 D9解:E是AC中点,EFBC,交AB于点F,EF是ABC的中位线,EF=BC,BC=6,菱形ABCD的周长是46=24故选:A2(2020遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EFBC,分别交AB,CD于E、F,连接PB、PD若AE=2,PF=8则图中阴影部分的面积为()A10 B12 C16 D18解:作PMAD于M,交BC于N则有

    2、四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,SADC=SABC,SAMP=SAEP,SPBE=SPBN,SPFD=SPDM,SPFC=SPCN,SDFP=SPBE=28=8,S阴=8+8=16,故选:C3(2020贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tanBAC的值为()A B1 C D解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,ABC为等腰直角三角形,BAC=45,则tanBAC=1,故选:B4(2020遵义)如图,四边形ABCD中,ADBC,ABC=90,AB=5,BC=10,连接AC、BD,以BD为直

    3、径的圆交AC于点E若DE=3,则AD的长为()A5 B4 C3 D2解:如图,在RtABC中,AB=5,BC=10,AC=5过点D作DFAC于F,AFD=CBA,ADBC,DAF=ACB,ADFCAB,设DF=x,则AD=x,在RtABD中,BD=,DEF=DBA,DFE=DAB=90,DEFDBA,x=2,AD=x=2,故选:D5(2020安顺)已知O的直径CD=10cm,AB是O的弦,ABCD,垂足为M,且AB=8cm,则AC的长为()A2cm B4cm C2cm或4cm D2cm或4cm解:连接AC,AO,O的直径CD=10cm,ABCD,AB=8cm,AM=AB=8=4cm,OD=OC

    4、=5cm,当C点位置如图1所示时,OA=5cm,AM=4cm,CDAB,OM=3cm,CM=OC+OM=5+3=8cm,AC=4cm;当C点位置如图2所示时,同理可得OM=3cm,OC=5cm,MC=53=2cm,在RtAMC中,AC=2cm故选:C6(2020铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A1cm B3cm C5cm或3cm D1cm或3cm解:当直线c在a、b之间时,a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,a与c的距离=41=3(cm);当直线c不在a、b之间时,a

    5、、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm故选:C二填空题(共8小题)7(2020贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点且AM=BN,点O是正五边形的中心,则MON的度数是72度解:连接OA、OB、OC,AOB=72,AOB=BOC,OA=OB,OB=OC,OAB=OBC,在AOM和BON中,AOMBON,BON=AOM,MON=AOB=72,故答案为:728(2020遵义)如图,ABC中点D在BC边上,BD=AD=AC,E为CD的中点若CAE=16,则B为37度解:

    6、AD=AC,点E是CD中点,AECD,AEC=90,C=90CAE=74,AD=AC,ADC=C=74,AD=BD,2B=ADC=74,B=37,故答案为379(2020贵阳)如图,在ABC中,BC=6,BC边上的高为4,在ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为解:如图,作AQBC于点Q,交DG于点P,四边形DEFG是矩形,AQDG,GF=PQ,设GF=PQ=x,则AP=4x,由DGBC知ADGABC,=,即=,则EF=DG=(4x),EG=,当x=时,EG取得最小值,最小值为,故答案为:10(2020遵义)如图,在菱形AB

    7、CD中,ABC=120,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为2.8解:作EHBD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,四边形ABCD是菱形,AD=AB,ABD=CBD=ABC=60,ABD为等边三角形,AB=BD=8,设BE=x,则EG=AE=8x,在RtEHB中,BH=x,EH=x,在RtEHG中,EG2=EH2+GH2,即(8x)2=(x)2+(6x)2,解得,x=2.8,即BE=2.8,故答案为:2.811(2020安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,BOC=6

    8、0,BCO=90,将BOC绕圆心O逆时针旋转至BOC,点C在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2(结果保留)解:BOC=60,BOC是BOC绕圆心O逆时针旋转得到的,BOC=60,BCO=BCO,BOC=60,CBO=30,BOB=120,AB=2cm,OB=1cm,OC=,BC=,S扇形BOB=,S扇形COC=,阴影部分面积=S扇形BOB+SBCOSBCOS扇形COC=S扇形BOBS扇形COC=;故答案为:12(2020黔西南州)已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是2解:依照题意画出图形,如图所示在RtAOB中,AB=2,OB=,OA=1,AC=2

    9、OA=2,S菱形ABCD=ACBD=22=2故答案为:213(2020铜仁市)在直角三角形ABC中,ACB=90,D、E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分BCE,BC=2,则AB=4解:CE所在直线垂直平分线段AD,CE平分ACD,ACE=DCECD平分BCE,DCE=DCBACB=90,ACE=ACB=30,A=60,AB=4故答案为:414(2020黔西南州)如图,已知在ABC中,BC边上的高AD与AC边上的高BE交于点F,且BAC=45,BD=6,CD=4,则ABC的面积为60解:ADBC,BEAC,AEF=BEC=BDF=90,BAC=45,AE=EB,EAF+C

    10、=90,CBE+C=90,EAF=CBE,AEFBEC,AF=BC=10,设DF=xADCBDF,=,=,整理得x2+10x24=0,解得x=2或12(舍弃),AD=AF+DF=12,SABC=BCAD=1012=60故答案为60三解答题(共9小题)15(2020贵阳)如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称(1)求证:AEF是等边三角形;(2)若AB=2,求AFD的面积解:(1)AB与AG关于AE对称,AEBC,四边形ABCD是平行四边形,ADBC,AEAD,即DAE=90,点F是DE的中点,即AF是RtADE的中线,

    11、AF=EF=DF,AE与AF关于AG对称,AE=AF,则AE=AF=EF,AEF是等边三角形;(2)记AG、EF交点为H,AEF是等边三角形,且AE与AF关于AG对称,EAG=30,AGEF,AB与AG关于AE对称,BAE=GAE=30,AEB=90,AB=2,BE=1、DF=AF=AE=,则EH=AE=、AH=,SADF=16(2020遵义)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AEBE),且EOF=90,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN(1)求证:OM=ON(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长解:(1)四边

    12、形ABCD是正方形,OA=OB,DAO=45,OBA=45,OAM=OBN=135,EOF=90,AOB=90,AOM=BON,OAMOBN(ASA),OM=ON;(2)如图,过点O作OHAD于点H,正方形的边长为4,OH=HA=2,E为OM的中点,HM=4,则OM=2,MN=OM=217(2020贵阳)如图,AB为O的直径,且AB=4,点C在半圆上,OCAB,垂足为点O,P为半圆上任意一点,过P点作PEOC于点E,设OPE的内心为M,连接OM、PM(1)求OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长解:(1)OPE的内心为M,MOP=MOC,MPO=MPE,P

    13、MO=180MPOMOP=180(EOP+OPE),PEOC,即PEO=90,PMO=180(EOP+OPE)=180(18090)=135,(2)如图,OP=OC,OM=OM,而MOP=MOC,OPMOCM,CMO=PMO=135,所以点M在以OC为弦,并且所对的圆周角为135的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作O,连OC,OO,在优弧CO取点D,连DA,DO,CMO=135,CDO=180135=45,COO=90,而OA=2cm,OO=OC=2=,弧OMC的长=(cm),同理:点M在扇形AOC内时,同的方法得,弧ONC的长为cm,所以内心M所经过的路径长为2=cm

    14、18(2020遵义)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC已知半圆O的半径为3,BC=2(1)求AD的长(2)点P是线段AC上一动点,连接DP,作DPF=DAC,PF交线段CD于点F当DPF为等腰三角形时,求AP的长解:(1)如图1,连接OD,OA=OD=3,BC=2,AC=8,DE是AC的垂直平分线,AE=AC=4,OE=AEOA=1,在RtODE中,DE=2;在RtADE中,AD=2;(2) 当DP=DF时,如图2,点P与A重合,F与C重合,则AP=0;当DP=PF时,如图4,CDP=PFD,DE是AC的垂直平分线,DPF

    15、=DAC,DPF=C,PDF=CDP,PDFCDP,DFP=DPC,CDP=CPD,CP=CD,AP=ACCP=ACCD=ACAD=82;当PF=DF时,如图3,FDP=FPD,DPF=DAC=C,DACPDC,AP=5,即:当DPF是等腰三角形时,AP的长为0或5或8219(2020安顺)如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF(1)求证:AF=DC;(2)若ACAB,试判断四边形ADCF的形状,并证明你的结论(1)证明:连接DF,E为AD的中点,AE=DE,AFBC,AFE=DBE,在AFE和DBE中,AFEDBE(AAS)

    16、,EF=BE,AE=DE,四边形AFDB是平行四边形,BD=AF,AD为中线,DC=BD,AF=DC;(2)四边形ADCF的形状是菱形,理由如下:AF=DC,AFBC,四边形ADCF是平行四边形, AD为中线AD=BC=DC,平行四边形ADCF是菱形;20(2020铜仁市)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作O交AB于点D,交AC于点G,直线DF是O的切线,D为切点,交CB的延长线于点E(1)求证:DFAC;(2)求tanE的值(1)证明:如图,连接OC,BC是O的直径,BDC=90,CDAB,AC=BC,AD=BD,OB=OC,OD是ABC的中位线ODAC,DF为

    17、O的切线,ODDF,DFAC;(2)解:如图,连接BG,BC是O的直径,BGC=90,EFC=90=BGC,EFBG,CBG=E,RtBDC中,BD=3,BC=5,CD=4,SABC=,64=5BG,BG=,由勾股定理得:CG=,tanCBG=tanE=21(2020安顺)如图,在ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D(1)求证:AB是半圆O所在圆的切线;(2)若cosABC=,AB=12,求半圆O所在圆的半径解:(1)如图,作OEAB于E,连接OD,OA,AB=AC,点O是BC的中点,CAO=BAO,AC与半圆O相切于D,ODAC,OEAB,OD=OE,AB径半圆O的半

    18、径的外端点,AB是半圆O所在圆的切线;(2)AB=AC,O是BC的中点,AOBC,在RtAOB中,OB=ABcosABC=12=8,根据勾股定理得,OA=4,由三角形的面积得,SAOB=ABOE=OBOA,OE=,即:半圆O所在圆的半径为22(2020贵阳)如图,在矩形ABCD中,AB2,AD=,P是BC边上的一点,且BP=2CP(1)用尺规在图中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图,在(1)的条件下,判断EB是否平分AEC,并说明理由;(3)如图,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,PFB能否由都经过P点的两次变

    19、换与PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)解:(1)依题意作出图形如图所示,(2)EB是平分AEC,理由:四边形ABCD是矩形,C=D=90,CD=AB=2,BC=AD=,点E是CD的中点,DE=CE=CD=1,在ADE和BCE中,ADEBCE,AED=BEC,在RtADE中,AD=,DE=1,tanAED=,AED=60,BCE=AED=60,AEB=180AEDBEC=60=BEC,BE平分AEC;(3)BP=2CP,BC=,CP=,BP=,在RtCEP中,tanCEP=,CEP=30,BEP=30,AEP=90,CDAB,F

    20、=CEP=30,在RtABP中,tanBAP=,PAB=30,EAP=30=F=PAB,CBAF,AP=FP,AEPFBP,PFB能由都经过P点的两次变换与PAE组成一个等腰三角形,变换的方法为:将BPF绕点B顺时针旋转120和EPA重合,沿PF折叠,沿AE折叠23(2020黔西南州)如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动(1)点P到达终点O的运动时间是s,此时点Q的运动距离是cm;(2)当运动时间为2s时,P、Q两点的距离为6cm;(3)请你计

    21、算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值解:(1)四边形AOCB是矩形,OA=BC=16,动点P从点A出发,以3cm/s的速度向点O运动,,此时,点Q的运动距离是cm(2)如图1,由运动知,AP=32=6cm,CQ=22=4cm,过点P作PEBC于E,过点Q作QFOA于F,四边形APEB是矩形,PE=AB=6,BE=6,EQ=BCBECQ=1664=6,根据勾股定理得,PQ=6,故答案为6;(3)设运动时间为t秒时,由运动知,AP=3t,CQ=2t,同(2)的方法得,PE=6,EQ=163t2t=165t,点P和点Q之间的距离是10cm,62+(165t)2=100,t=或t=;(4)k的值是不会变化,理由:四边形AOCB是矩形,OC=AB=6,OA=16,C(6,0),A(0,16),直线AC的解析式为y=x+16,设运动时间为t,AP=3t,CQ=2t,OP=163t,P(0,163t),Q(6,2t),PQ解析式为y=x+163t,联立得,x+16=x+163t,x+x=3t,5tx16x+16x=3t,x=,y=,D(,)k=是定值

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020年贵州省中考数学压轴题汇编解析:几何综合.doc
    链接地址:https://www.163wenku.com/p-5698031.html
    2023DOC
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库