书签 分享 收藏 举报 版权申诉 / 17
上传文档赚钱

类型最新中考专题扇形和圆锥(DOC 14页).docx

  • 上传人(卖家):2023DOC
  • 文档编号:5697460
  • 上传时间:2023-05-04
  • 格式:DOCX
  • 页数:17
  • 大小:271.92KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《最新中考专题扇形和圆锥(DOC 14页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    最新中考专题扇形和圆锥DOC 14页 最新 中考 专题 扇形 圆锥 DOC 14 下载 _各科综合资料_初中
    资源描述:

    1、精品文档创新是时下非常流行的一个词,确实创新能力是相当重要的特别是对我们这种经营时尚饰品的小店,更应该勇于创新。在这方面我们是很欠缺的,故我们在小店经营的时候会遇到些困难,不过我们会克服困难,努力创新,把我们的小店经营好。2www。cer。net/artide/2003082213089728。shtml。4、“体验化” 消费月生活费人数(频率)百分比2www。cer。net/artide/2003082213089728。shtml。“碧芝”最吸引人的是那些小巧的珠子、亮片等,都是平日里不常见的。据店长梁小姐介绍,店内的饰珠有威尼斯印第安的玻璃珠、秘鲁的陶珠、奥地利的施华洛世奇水晶、法国的仿

    2、金片、日本的梦幻珠等,五彩缤纷,流光异彩。按照饰珠的质地可分为玻璃、骨质、角质、陶制、水晶、仿金、木制等种类,其造型更是千姿百态:珠型、圆柱型、动物造型、多边形、图腾形象等,美不胜收。全部都是进口的,从几毛钱一个到几十元一个的珠子,做一个成品饰物大约需要几十元,当然,还要决定于你的心意 尽管售价不菲,却仍没挡住喜欢它的人。与此同时,上海市工商行政管理局也对大学生创业采取了政策倾斜:凡高校毕业生从事个体经营的,自批准经营日起,年内免交登记注册费、个体户管理费、集贸市场管理费、经济合同鉴证费、经济合同示范文本工本费等,但此项优惠不适用于建筑、娱乐和广告等行业。1、购买“女性化”(一)对“漂亮女生”

    3、饰品店的分析(四)大学生对手工艺制品消费的要求扇形和和圆锥1用一张面积为60的扇形铁皮,做成一个圆锥容器的侧面(接缝处不计),若这个圆锥的底面半径为5,则这个圆锥的母线长为 。2已知圆锥的底面半径是3cm,母线长为6cm,则这个圆锥的侧面积为_ _cm2(结果保留)3如果圆的半径为6,那么60的圆心角所对的弧长为_.4已知扇形的半径为,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为 .5已知圆锥的底面半径是3cm,高是4cm,则这个圆锥的侧面展开图的面积是_ cm26已知圆锥的高为4cm,底面半径为3cm,则此圆锥的侧面积为 cm2.(结果中保留)7已知圆锥的高是4,母线长为5

    4、,则它的侧面积为_(结果保留)8已知圆锥底面圆的半径为6cm,它的侧面积为60cm2,则这个圆锥的高是cm9用一圆心角为120,半径为6cm的扇形做成一个圆锥的侧面,则这个圆锥的底面半径是_。10一条弧所对的圆心角为135,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 。11用半径为30cm,圆心角为120的扇形卷成一个无底的圆锥形筒,则这个圆锥形筒的底面半径为 cm12小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为 cm2(结果保留)13如图,如果从半径为9的圆形纸片剪去圆周的一个扇形,将留

    5、下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 14如图所示,一半径为1的圆内切于一个圆心角为60的扇形,则扇形的周长为 15如图,在ABC中,A=90,AB=AC=2,点O是边BC的中点,半圆O与ABC相切于点D、E,则阴影部分的面积等于 16某台钟的时针长为9分米,从上午7时到上午11时该钟时针针尖走过的路程是 分米(结果保留)17在RtABC中,C=90,AC=12,BC=5,将ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是_.18如图,现有一圆心角为90,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),求该圆锥的侧面积和圆锥的高(结果保留)19

    6、一个圆锥形零件的母线长为6,底面的半径为2,求这个圆锥形零件的侧面积和全面积20如图,一个圆锥的高为,侧面展开图是半圆,求:(1)圆锥的底面半径与母线之比;(2)圆锥的全面积21如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为32cm,母线长为7cm,为了防雨,需要在它的顶部铺上油毡,所需油毡的面积至少是多少?22如图,CD为O的直径,CDAB,垂足为点F,AOBC,垂足为点E,AO=1(1)求C的大小;(2)求阴影部分的面积23如图AB是O的切线,切点为B,AO交O于点C,过点C作DCOA,交AB于点D.(1)求证:CDOBDO;(2)若A30,O的半径为4,求阴影部分的面积(结果保留)24如

    7、图,已知O分别切ABC的三条边AB、BC、CA于点D、,SABC=10cm2,CABC=10cm,且C=60求:()O的半径;()扇形的面积(结果保留);()扇形的周长(结果保留)。25如图,在ABC中,ACB=90,E为BC上一点,以CE为直径作O,AB与O相切于点D,连接CD,若BE=OE=2(1)求证:A=2DCB;(2)求图中阴影部分的面积(结果保留和根号)26如图,AB是O的直径,C是O上的一点,DA与O相切于点A,DA=DC=(1)求证:DC是O的切线;(2)若CAB=30,求阴影部分的面积精品文档参考答案112【解析】试题分析:先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆

    8、锥底面的周长得到扇形的弧长=10,再根据扇形的半径等于圆锥的母线长和扇形的面积公式求解:这个圆锥的母线长为l,这个圆锥的底面半径为5,扇形的弧长=25=10.扇形的面积为60,60=l10,l=12考点:圆锥的计算218【解析】试题分析:底面圆的半径为3,则底面周长=6,侧面面积=66=18cm2故答案是18考点:圆锥的计算3【解析】试题分析:直接根据弧长公式进行计算试题解析:根据弧长的公式考点: 弧长的计算4【解析】试题分析:圆锥的侧面积=故答案是考点:圆锥的计算515【解析】试题分析:因为圆锥的底面半径是3,高是4,所以圆锥的母线长为5,所以这个圆锥的侧面展开图的面积是35=15故答案是1

    9、5考点:圆锥的计算615.【解析】试题分析:高线长为4cm,底面的半径是3cm,由勾股定理知:母线长为5cm.圆锥侧面积=底面周长母线长=65=15(cm2)考点:1.勾股定理;2.圆锥的计算715【解析】试题分析:圆锥的高是4,母线长为5,所以圆锥的底面半径是3.圆锥的侧面积=2352=15故答案是15考点:圆锥的计算88.【解析】试题分析:设圆锥的母线长为l,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,则l26=60,然后利用勾股定理计算圆锥的高试题解析:设圆锥的母线长为l,根据题意得 l26=60,解得l=10,所以圆锥的高=(cm)考点: 圆

    10、锥的计算.92cm【解析】试题分析:利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得试题解析:设此圆锥的底面半径为r,由题意,得,解得r=2cm考点: 圆锥的计算1040cm.【解析】试题分析:设出弧所在圆的半径,由于弧长等于半径为5cm的圆的周长的3倍,所以根据原题所给出的等量关系,列出方程,解方程即可试题解析:设弧所在圆的半径为r,由题意得, ,解得,r=40cm考点:圆心角、弧、弦的关系.1110【解析】试题分析:扇形的弧长是:=20cm,设底面半径是r,则2r=20,解得:r=10故答案是10考点:圆锥的计算12270【解析】试题分析:圆锥的侧面积=底面半径母线长,把相关数值代入

    11、计算即可试题解析:圆锥形礼帽的侧面积=930=270cm2考点: 圆锥的计算.13.【解析】试题分析:因为圆锥的高,底面半径,母线构成直角三角形,则留下的扇形的弧长=,所以圆锥的底面半径r=122=6,所以圆锥的高=. 试题解析:从半径为9cm的圆形纸片剪去圆周的一个扇形,剩下的扇形的角度=360=240,留下的扇形的弧长=,圆锥的底面半径r=122=6,圆锥的高=.考点: 1.弧长的计算;2.勾股定理146+【解析】试题分析:首先求出扇形半径,进而利用扇形弧长公式求出扇形弧长,进而得出扇形周长试题解析:如图所示:设O与扇形相切于点A,B,则CAO=90,ACB=30,一半径为1的圆内切于一个

    12、圆心角为60的扇形AO=1,CO=2AO=2,BC=2+1=3,扇形的弧长为:则扇形的周长为:3+3+=6+考点: 1.相切两圆的性质;2.弧长的计算.15【解析】试题分析:首先连接OD,OE,易得BDFEOF,继而可得S阴影=S扇形DOE,即可求得答案试题解析:连接OD,OE,半圆O与ABC相切于点D、E,ODAB,OEAC,、在ABC中,A=90,AB=AC=2,四边形ADOE是正方形,OBD和OCE是等腰直角三角形,OD=OE=AD=BD=AE=EC=1,ABC=EOC=45,ABOE,DBF=OEF,在BDF和EOF中,BDFEOF(AAS),考点: 1.切线的性质;2.扇形面积的计算

    13、166【解析】试题分析:从上午7时到上午11时,时针共转了4个大格共120,然后根据弧长公式算出时针针尖走过的路程试题解析:时针从上午7时走到上午11时时针共转了120时针尖走过的路程为:(分米)故答案为:6考点: 1.弧长的计算;2.钟面角17【解析】由已知得,圆锥的母线长,底面半径为5, 圆锥的侧面积是18圆锥的高为cm,侧面积为16cm2【解析】试题分析:利用扇形的弧长公式可得圆锥侧面展开图的弧长,除以2即为圆锥的底面半径,利用勾股定理可得圆锥的高,圆锥的侧面积=底面半径母线长,把相关数值代入计算即可试题解析:扇形的弧长为cm,圆锥底面的周长为4cm,圆锥底面的半径为4(2)=2cm,圆

    14、锥底面的高为(cm)圆锥的侧面积=28=16(cm2),答:圆锥的高为cm,侧面积为16cm2考点: 1.圆锥的计算;2.扇形面积的计算.19见解析.【解析】试题分析:圆锥形的侧面积为底面周长乘以高,关键求高,根据勾股定理可得高,全面积等于侧面积加上一个圆的面积.试题解析:根据勾股定理可得高,.考点:1.圆锥形的侧面积和全面积.2.勾股定理.20详见解析【解析】试题分析:(1)由题意可知:圆锥的底面周长等于圆锥的弧长,由此可得,化简可得:.(2)首先根据勾股定理可求得圆锥的底面半径和圆锥的母线的长度,然后利用圆锥的侧面积即展开图的半圆面积加上圆锥的底面积即可求出圆锥的全面积.试题解析:解:(1

    15、)由题意可知,(2)在中,考点:圆锥的全面积的计算.21112cm2.【解析】试题分析:圆锥的侧面积S=LR=,其中R是扇形母线,L是扇形弧长,也是底面圆周的周长,由题, 这个圆锥的底面周长为32cm,母线长为7cm,所以L=32cm,R=7cm,所以112 cm2 .试题解析:圆锥的底面周长为32cm,母线长为7cm, 圆锥的侧面积为:112cm2 ,答:所需油毡的面积至少是112cm2.考点:圆锥的侧面积.22解:(1)CD是圆O的直径,CDAB,。C=AOD。AOD=COE,C=COE。AOBC,C=30。(2)连接OB,由(1)知,C=30,AOD=60。AOB=120。在RtAOF中

    16、,AO=1,AOF=60,AF=,OF=。AB=。【解析】试题分析:(1)根据垂径定理可得,C=AOD,然后在RtCOE中可求出C的度数。(2)连接OB,根据(1)可求出AOB=120,在RtAOF中,求出AF,OF,然后根据S阴影=S扇形OABSOAB,即可得出答案。23(1)见解析 (2)【解析】(1)证明:AB切O于点B,OBAB,即B90.又DCOA,OCD90.在RtCOD与RtBOD中,ODOD,OBOC,RtCODRtBOD.CDOBDO.(2)在RtABO中,A30,OB4,BOC60,RtCODRtBOD,BOD30,BDOBtan 30.S四边形OCDB2SOBD24.BO

    17、C60,S扇形OBC.S阴影S四边形OCDBS扇形OBC.24(1)2cm;(2) cm2;(3)(cm).【解析】试题分析:(1)连接AO、BO、CO,根据SABC=SAOC+SAOB+SBOC即可求出O的半径;(2)因为OFAC,OEBC,C=60可求出EOF的度数,代入扇形面积计算公式即可求出扇形的面积;(3)利用扇形的周长=扇形的弧长+半径2,即可求出扇形的周长.试题解析:(1)如图,连接AO、BO、CO,则SABC=SAOC+SAOB+SBOC,又AB+BC+AC=10,r=2cm;(2)因为OFAC,OEBC,C=60所以EOF=120所以S扇形EOF= cm2(3)扇形EOF的周

    18、长=(cm).考点: 1.面积法;2.扇形面积计算;3.扇形弧长计算.25(1)证明见解析;(2).【解析】试题分析:(1)连接OD,则ODAB,可知A=DOB.由DOB=2DCB得:A=2DCB;(2)由图形可知:阴影部分的面积=SBOD-扇形DOE的面积,代入相关数据即可求出.试题解析:(1)证明:连接ODAB与O相切于点D, ODAB,BDOB=90ACB=90,AB=90,A=DOBOC=OD,DOB=2DCBA=2DCB(2)在RtODB中,OD=OE,OE=BE,sinB=,B=30,DOB=60BD=OBsin60=, .考点: 1.切线的判定;2.扇形面积的计算.26(1)证明见解析;(2).【解析】试题分析:(1)连接OC,证明OCDC,即可得到DC是O的切线;(2)根据阴影部分的面积=扇形的面积-BOC的面积计算即可试题解析:(1)证明:连接OC,DA=DC,DAC=DCA,DA与O相切于点A,DAB=90,DAC+CAB=90,OC=OA,OAC=OCA,DCA+ACO=90,即OCDC,DC是O的切线;(2)阴影部分的面积=扇形的面积-BOC的面积,阴影部分的面积=考点:1.切线的判定与性质;2.扇形面积的计算

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:最新中考专题扇形和圆锥(DOC 14页).docx
    链接地址:https://www.163wenku.com/p-5697460.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库