中考数学平行四边形综合练习题及答案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学平行四边形综合练习题及答案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 平行四边形 综合 练习题 答案 下载 _各科综合资料_初中
- 资源描述:
-
1、一、平行四边形真题与模拟题分类汇编(难题易错题)1如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH(1)求证:APB=BPH;(2)当点P在边AD上移动时,求证:PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长【答案】(1)证明见解析(2)证明见解析(3)2【解析】试题分析:(1)根据翻折变换的性质得出PBC=BPH,进而利用平行线的性质得出APB=PBC即可得出答案;(2)首先证明ABPQBP,进而得出BCHBQH,即可得出PD+DH+PH=
2、AP+PD+DH+HC=AD+CD=8;(3)过F作FMAB,垂足为M,则FM=BC=AB,证明EFMBPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值试题解析:(1)解:如图1,PE=BE,EBP=EPB又EPH=EBC=90,EPH-EPB=EBC-EBP即PBC=BPH又ADBC,APB=PBCAPB=BPH(2)证明:如图2,过B作BQPH,垂足为Q由(1)知APB=BPH,又A=BQP=90,BP=BP,在ABP和QBP中,ABPQBP(AAS),AP=QP,AB=BQ,又AB=BC,BC=BQ又C=BQH=90,BH=BH,在BCH和
3、BQH中,BCHBQH(SAS),CH=QHPHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8PDH的周长是定值(3)解:如图3,过F作FMAB,垂足为M,则FM=BC=AB又EF为折痕,EFBPEFM+MEF=ABP+BEF=90,EFM=ABP又A=EMF=90,在EFM和BPA中,EFMBPA(AAS) EM=AP设AP=x在RtAPE中,(4-BE)2+x2=BE2解得BE=2+,CF=BE-EM=2+-x,BE+CF=-x+4=(x-2)2+3当x=2时,BE+CF取最小值,AP=2考点:几何变换综合题2已知:在菱形ABCD中,E,F是BD上的两点,且AECF求
4、证:四边形AECF是菱形【答案】见解析【解析】【分析】由菱形的性质可得ABCD,ABCD,ADFCDF,由“SAS”可证ADFCDF,可得AFCF,由ABECDF,可得AECF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形【详解】证明:四边形ABCD是菱形ABCD,ABCD,ADFCDF,ABCD,ADFCDF,DFDFADFCDF(SAS)AFCF,ABCD,AECFABECDF,AEFCFEAEBCFD,ABECDF,ABCDABECDF(AAS)AECF,且AECF四边形AECF是平行四边形又AFCF,四边形AECF是菱形【点睛】本题主要考查菱形的判定定理,首先要判定其为平行四
5、边形,这是菱形判定的基本判定.3如图,四边形ABCD中,BCD=D=90,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当B=70时,求AEC的度数;(3)当ACE为直角三角形时,求边BC的长.【答案】(1);(2)AEC=105;(3)边BC的长为2或.【解析】试题分析:(1)过A作AHBC于H,得到四边形ADCH为矩形在BAH中,由勾股定理即可得出结论(2)取CD中点T,连接TE,则TE是梯形中位线,得ETAD,ETCD,AET=B=70又AD=AE=1,得到AED=ADE=DET=35由ET垂直平分CD,得CET=DET
6、=35,即可得到结论 (3)分两种情况讨论:当AEC=90时,易知CBECAECAD,得BCE=30,解ABH即可得到结论当CAE=90时,易知CDABCA,由相似三角形对应边成比例即可得到结论试题解析:解:(1)过A作AHBC于H由D=BCD=90,得四边形ADCH为矩形在BAH中,AB=2,BHA=90,AH=y,HB=, 则(2)取CD中点T,联结TE,则TE是梯形中位线,得ETAD,ETCD,AET=B=70又AD=AE=1,AED=ADE=DET=35由ET垂直平分CD,得CET=DET=35,AEC=7035=105 (3)分两种情况讨论:当AEC=90时,易知CBECAECAD,
展开阅读全文