书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型中考数学圆的解题方法归纳总结及例题分析.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5696643
  • 上传时间:2023-05-04
  • 格式:DOC
  • 页数:12
  • 大小:520KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《中考数学圆的解题方法归纳总结及例题分析.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中考 数学 解题 方法 归纳 总结 例题 分析 下载 _中考其它_中考复习_数学_初中
    资源描述:

    1、中考数学圆的解题方法归纳总结及例题分析1 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。作用:利用垂径定理;利用圆心角及其所对的弧、弦和弦心距之间的关系;利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。例1:例2:2 遇到有直径时常常添加(画)直径所对的圆周角。作用:利用圆周角的性质,得到直角或直角三角形。3 遇到90的圆周角时常常连结两条弦没有公共点的另一端点。作用:利用圆周角的性质,可得到直径。例题:如图,已知在等腰ABC中,A=B=30,过点C作CDAC交AB于点D;求证:BC是过A,D,C三点的圆的切线解:(1)作

    2、出圆心O,以点O为圆心,OA长为半径作圆(2)证明:CDAC,ACD=90AD是O的直径连结OC,A=B=30, ACB=120,又OA=OC, ACO=A =30BCO=ACB-ACO =120-30=90BCOC,BC是O的切线.4 遇到弦时常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。作用:可得等腰三角形;据圆周角的性质可得相等的圆周角。如图,ABC是O的内接三角形,AD是O 的直径,若ABC=50,求CAD的度数。解:连接CD,ADC=ABC=50,AD是O 的直径,ACD=90CAD+ADC=90CAD=90-ADC=90-50= 405 遇到有切线时

    3、(1)常常添加过切点的半径(连结圆心和切点)作用:利用切线的性质定理可得到直角或直角三角形。(2)常常添加连结圆上一点和切点作用:可构成弦切角,从而利用弦切角定理。例题:如图,AB是O的直径,弦AC与AB成30角,CP与O切于C,交AB的延长线于D,(1)求证:AC=CP(2)若CP=6,求图中阴影部分的面积(结果精确到0.1)。解:(1)连结OC,AO=OC,ACO=A=30,COP=2ACO=60PC切O于点C,OCPC,P=30,A=P,AC=PC。6 遇到证明某一直线是圆的切线时(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。(2)若直线过圆上

    4、的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。7 遇到两相交切线时(切线长)常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。作用:据切线长及其它性质,可得到:角、线段的等量关系;垂直关系;全等、相似三角形。例题:如图,P是O外一点,PA、PB分别和O切于A、B,C是弧AB上任意一点,过C作O的切线分别交PA、PB于D、E,若PDE的周长为12,则PA长为_答案 PA,PB分别和O切于A,B两点,PA=PB,DE是O的切线,DA=DC,EB=EC,PDE的周长为12,即PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,PA=68 遇到三

    5、角形的内切圆时连结内心到各三角形顶点,或过内心作三角形各边的垂线段。作用:利用内心的性质,可得: 内心到三角形三个顶点的连线是三角形的角平分线; 内心到三角形三条边的距离相等。例题:ABC的内切圆O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm根据题意,得x+y=9y+z=14x+z=13解得x=4y=5z=9即AF=4cm、BD=5cm、CE=9cm9 遇到三角形的外接圆时如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边.如果三角形不是直角三角形例1:已知:在ABC中,AB13,BC12,AC5,求ABC的外接圆的半径.解:AB13,BC12,AC5,ABBCAC,C90,AB为ABC的外接圆的直径,ABC的外接圆的半径为6.5.例2:10 遇到三角形的外接圆和内切圆时例题:

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:中考数学圆的解题方法归纳总结及例题分析.doc
    链接地址:https://www.163wenku.com/p-5696643.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库