中考数学压轴题抛物线及动点精选.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学压轴题抛物线及动点精选.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 压轴 抛物线 精选 下载 _各科综合资料_初中
- 资源描述:
-
1、动点与抛物线专题复习一、平行四边形与抛物线1、(2012钦州)如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=(1)求抛物线对应的函数解析式;(2)将图甲中ABO沿x轴向左平移到DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MNy轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形(参考公式:抛物线y=ax2+bx+c(a0)
2、的顶点坐标为(,),对称轴是直线x=)2、(2012鸡西)如图,在平面直角坐标系中,已知RtAOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x27x+12=0的两根(OAOB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒(1)求A、B两点的坐标(2)求当t为何值时,APQ与AOB相似,并直接写出此时点Q的坐标(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由3
3、.(2012恩施州)如图,已知抛物线y=x2+bx+c与一直线相交于A(1,0),C(2,3)两点,与y轴交于点N其顶点为D(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EFBD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值二、 梯形与抛物线1、已知,在RtOAB中,OAB=90,BOA=30,AB=2若以O为坐标原点,OA所在直线为x轴,建立如
4、图所示的平面直角坐标系,点B在第一象限内将RtOAB沿OB折叠后,点A落在第一象限内的点C处(1)求点C的坐标;(2)若抛物线y=ax2+bx(a0)经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由2、(2012泉州)如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q(1)求h的值;(2)通过操作、观察,算出POQ的面积的最小值(不必说
5、理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状3.(2012玉林)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2(1)求点D的坐标,并直接写出t的取值范围(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线
6、于点F,连接EF,则AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值(3)在(2)的条件下,t为何值时,四边形APQF是梯形?三、 等腰三角形、菱形与抛物线1、(2012龙岩)在平面直角坐标系xOy中,一块含60角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(1,0)(1)请直接写出点B、C的坐标:B 、C ;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中EDF=90,DEF=60),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C此时,EF所在直线与
7、(1)中的抛物线交于点M设AE=x,当x为何值时,OCEOBC;在的条件下探究:抛物线的对称轴上是否存在点P使PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由3、(2012湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上O为原点,点A的坐标为(6,0),点B的坐标为(0,8)动点M从点O出发沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t0)(1)当t=3秒时直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;
8、(2)在此运动的过程中,MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,MNA是一个等腰三角形?4、如图,直线l1经过点A(1,0),直线l2经过点B(3,0),l1、l2均为与y轴交于点C(0,),抛物线y=ax2+bx+c(a0)经过A、B、C三点(1)求抛物线的函数表达式;(2)抛物线的对称轴依次与x轴交于点D、与l2交于点E、与抛物线交于点F、与l1交于点G求证:DE=EF=FG;(3)若l1l2于y轴上的C点处,点P为抛物线上一动点,要使PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由5、如图,在平面直角坐标系中,直角梯形OABC
9、的边OC、OA分别与x轴、y轴重合,ABOC,AOC=90,BCO=45,BC=12,点C的坐标为(18,0)(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由6、(2012铁岭)如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D直线y=2x1经过抛物线上一点B(2,m)且与y轴交于点C,与抛物线的对称轴交于点F(1)求m的值
10、及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若SADP=SADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由四、 直角三角形与抛物线1、(2012广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为
11、直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式2、(2012河池)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=x2+x+4经过A、B两点(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB设直线l移动的时间为t(0t4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得PAM是直角三角形?若存在,请
12、求出点P的坐标;若不存在,请说明理由3.(2012海南)如图,顶点为P(4,4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:证明:ANM=ONM;ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由4、(2012云南)如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A抛物线y=x2+bx+c的图象过点E(1,0),并与直线相交于A、B两点(1)求抛物线的解析式(关系式);(2)过点A作A
13、CAB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由五、 相似三角形与抛物线1、(2012福州)如图1,已知抛物线y=ax2+bx(a0)经过A(3,0)、B(4,4)两点(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,求出所有满足PODNOB的点P坐标(点P、O、D分别与点N、O、B对应)3、(2012遵义)如图,已知抛物线y=ax2+bx+c(a0)的图象经
14、过原点O,交x轴于点A,其顶点B的坐标为(3,)(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使SPOA=2SAOB;(3)在抛物线上是否存在点Q,使AQO与AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由4.(2012黄冈)如图,已知抛物线的方程C1:y=(x+2)(xm)(m0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得
15、以点B、C、F为顶点的三角形与BCE相似?若存在,求m的值;若不存在,请说明理由5、(2012常德)如图,已知二次函数的图象过点A(4,3),B(4,4)(1)求二次函数的解析式:(2)求证:ACB是直角三角形;(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与ABC相似?若存在,求出点P的坐标;若不存在,请说明理由6(2012鞍山)如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DMx轴正半轴于点M,交线段AB于点C,DM=6,连接DA,DAC=90(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是
16、线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE是否存在点P,使BPF与FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由7.(2012阜新)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(3,0),B(1,0)两点,与y轴交于点C(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!(3)在平面直角坐标系中
17、,是否存在点Q,使BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E是否存在点Q,使以点B、Q、E为顶点的三角形与AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由六、抛物线中的翻折问题1、(2012天门)如图,抛物线y=ax2+bx+2交x轴于A(1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛
18、物线上一动点(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将CPQ沿CP翻折,点Q的对应点为Q是否存在点P,使Q恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由2、(2010恩施州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,3)点,点P是直线BC下方的抛物线上一动点(1)求这个二次函数的表达式(2)连接PO、PC,并把POC沿CO翻折,得到四边形POPC,那么是否存在点P,
19、使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积动点与抛物线专题复习答案一、平行四边形与抛物线1、解:(1)由于抛物线y=x2+bx+c与y轴交于点B(0,4),则 c=4;抛物线的对称轴 x=,b=5a=;即抛物线的解析式:y=x2+x+4(2)A(4,0)、B(3,0)OA=4,OB=3,AB=5;若四边形ABCD是菱形,则 BC=AD=AB=5,C(5,3)、D(1,0)将C(5,3)代入y=x2+x+4中,得:(5)2+(5)+4=3,所以点C在抛物线上;同理可
20、证:点D也在抛物线上(3)设直线CD的解析式为:y=kx+b,依题意,有:,解得 直线CD:y=x由于MNy轴,设 M(t,t2+t+4),则 N(t,t);t5或t1时,l=MN=(t2+t+4)(t)=t2+t+;5t1时,l=MN=(t)(t2+t+4)=t2t;若以M、N、C、E为顶点的四边形是平行四边形,由于MNCE,则MN=CE=3,则有:t2+t+=3,解得:t=32;t2t=3,解得:t=3;综上,l=且当t=32或3时,以M、N、C、E为顶点的四边形是平行四边形2、解:(1)解方程x27x+12=0,得x1=3,x2=4,OAOB,OA=3,OB=4A(0,3),B(4,0)
展开阅读全文