中考数学圆的综合综合题汇编附答案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学圆的综合综合题汇编附答案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 综合 汇编 答案 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、一、圆的综合 真题与模拟题分类汇编(难题易错题)1如图,点P在O的直径AB的延长线上,PC为O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交O于点E(1)如图1,求证:DAC=PAC;(2)如图2,点F(与点C位于直径AB两侧)在O上,连接EF,过点F作AD的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=DG,PO=5,求EF的长【答案】(1)证明见解析;(2)证明见解析;(3)EF=3【解析】【分析】(1)连接OC,求出OCAD,求出OCPC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出
2、DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出FHO=EHO=45,根据矩形的性质得出EHDG,求出OM=AE,设OM=a,则HM=a,AE=2a,AE=DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tanMBO,tanP=,设OC=k,则PC=2k,根据OP=k=5求出k=,根据勾股定理求出a,即可求出答案【详解】(1)证明:连接OC,PC为O的切线,OCPC,ADPC,OCAD,OCA=DAC,OC=OA,PAC=OCA,DAC=PAC;(2)证明:连接BE交GF于H,连接OH,FGAD,FGD+D=180,D=90,FGD=90,
3、AB为O的直径,BEA=90,BED=90,D=HGD=BED=90,四边形HGDE是矩形,DE=GH,DG=HE,GHE=90,HEF=FEA=BEA=45,HFE=90HEF=45,HEF=HFE,FH=EH,FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,EH=HF,OE=OF,HO=HO,FHOEHO,FHO=EHO=45,四边形GHED是矩形,EHDG,OMH=OCP=90,HOM=90OHM=9045=45,HOM=OHM,HM=MO,OMBE,BM=ME,OM=AE,设OM=a,则HM=a,AE=2a,AE=DG,DG=3a,HGC=GCM=GHE=90
4、,四边形GHMC是矩形,GC=HM=a,DC=DGGC=2a,DG=HE,GC=HM,ME=CD=2a,BM=2a,在RtBOM中,tanMBO=,EHDP,P=MBO,tanP=,设OC=k,则PC=2k,在RtPOC中,OP=k=5,解得:k=,OE=OC=,在RtOME中,OM2+ME2=OE2,5a2=5,a=1,HE=3a=3,在RtHFE中,HEF=45,EF=HE=3【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键2如图,在锐角ABC中,AC是最短边以AC为直径的O,交BC于D,过O作OEBC,交OD于E,连接AD、
5、AE、CE(1)求证:ACE=DCE;(2)若B=45,BAE=15,求EAO的度数;(3)若AC=4,求CF的长【答案】(1)证明见解析,(2)60;(3) 【解析】【分析】(1)易证OEC=OCE,OEC=ECD,从而可知OCE=ECD,即ACE=DCE;(2)延长AE交BC于点G,易证AGC=B+BAG=60,由于OEBC,所以AEO=AGC=60,所以EAO=AEO=60;(3)易证,由于,所以=,由圆周角定理可知AEC=FDC=90,从而可证明CDFCEA,利用三角形相似的性质即可求出答案【详解】(1)OC=OE,OEC=OCEOEBC,OEC=ECD,OCE=ECD,即ACE=DC
6、E;(2)延长AE交BC于点GAGC是ABG的外角,AGC=B+BAG=60OEBC,AEO=AGC=60OA=OE,EAO=AEO=60(3)O是AC中点,=AC是直径,AEC=FDC=90ACE=FCD,CDFCEA,=,CF=CA=【点睛】本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识3如图,AB为O的直径,点D为AB下方O上一点,点C为弧ABD的中点,连接CD,CA(1)求证:ABD=2BDC;(2)过点C作CHAB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,
7、AD=24,求线段DE的长度 【答案】(1)证明见解析;(2)见解析;(3).【解析】【分析】(1)连接AD,如图1,设BDC=,ADC=,根据圆周角定理得到CAB=BDC=,由AB为O直径,得到ADB=90,根据余角的性质即可得到结论;(2)根据已知条件得到ACE=ADC,等量代换得到ACE=CAE,于是得到结论;(3)如图2,连接OC,根据圆周角定理得到COB=2CAB,等量代换得到COB=ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到AB=26,由相似三角形的性质即可得到结论【详解】(1)连接AD如图1,设BDC=,ADC=,则CAB=BDC=,点C为弧ABD中点,=,ADC
8、=DAC=,DAB=,AB为O直径,ADB=90,+=90,=90,ABD=90DAB=90(),ABD=2,ABD=2BDC;(2)CHAB,ACE+CAB=ADC+BDC=90,CAB=CDB,ACE=ADC,CAE=ADC,ACE=CAE,AE=CE;(3)如图2,连接OC,COB=2CAB,ABD=2BDC,BDC=CAB,COB=ABD,OHC=ADB=90,OCHABD,OH=5,BD=10,AB=26,AO=13,AH=18,AHEADB,即=,AE=,DE=【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键4如图在ABC中,
9、C=90,AC=BC,AB=30cm,点P在AB上,AP=10cm,点E从点P出发沿线段PA以2cm/s的速度向点A运动,同时点F从点P出发沿线段PB以1cm/s的速度向点B运动,点E到达点A后立刻以原速度沿线段AB向点B运动,在点E、F运动过程中,以EF为边作正方形EFGH,使它与ABC在线段AB的同侧,设点E、F运动的时间为t(s)(0t20) (1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与ABC重叠部分的面积为S试求S关于t的函数表达式;以点C为圆心,t为半径作C,当C与GH所在的直线相切时,求此时S的值【答案】(1)t=2s或10s;(2)S=;100cm2【解析】试题
10、分析:(1)如图1中,当0t5时,由题意AE=EH=EF,即102t=3t,t=2;如图2中,当5t20时,AE=HE,2t10=10(2t10)+t,t=10;(2)分四种切线讨论a、如图3中,当0t2时,重叠部分是正方形EFGH,S=(3t)2=9t2b、如图4中,当2t5时,重叠部分是五边形EFGMNc、如图5中,当5t10时,重叠部分是五边形EFGMNd、如图6中,当10t20时,重叠部分是正方形EFGH分别计算即可;分两种情形分别列出方程即可解决问题试题解析:解:(1)如图1中,当0t5时,由题意得:AE=EH=EF,即102t=3t,t=2如图2中,当5t20时,AE=HE,2t1
11、0=10(2t10)+t,t=10综上所述:t=2s或10s时,点H落在AC边上(2)如图3中,当0t2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2t5时,重叠部分是五边形EFGMN,S=(3t)2(5t10)2=t2+50t50如图5中,当5t10时,重叠部分是五边形EFGMN,S=(20t)2(303t)2=t2+50t50如图6中,当10t20时,重叠部分是正方形EFGH,S=(20t)2=t240t+400综上所述:S=如图7中,当0t5时,t+3t=15,解得:t=,此时S=100cm2,当5t20时,t+20t=15,解得:t=10,此时S=100综上所述:当
12、C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题5已知O中,弦AB=AC,点P是BAC所对弧上一动点,连接PA,PB(1)如图,把ABP绕点A逆时针旋转到ACQ,连接PC,求证:ACP+ACQ=180;(2)如图,若BAC=60,试探究PA、PB、PC之间的关系(3)若BAC=120时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明【答案】(1)证明见解析;(2)PA=PB+PC
13、理由见解析;(3)若BAC=120时,(2)中的结论不成立, PA=PB+PC 【解析】试题分析:(1)如图,连接PC根据“内接四边形的对角互补的性质”即可证得结论;(2)如图,通过作辅助线BC、PE、CE(连接BC,延长BP至E,使PE=PC,连接CE)构建等边PCE和全等三角形BECAPC;然后利用全等三角形的对应边相等和线段间的和差关系可以求得PA=PB+PC;(3)如图,在线段PC上截取PQ,使PQ=PB,过点A作AGPC于点G利用全等三角形ABPAQP(SAS)的对应边相等推知AB=AQ,PB=PG,将PA、PB、PC的数量关系转化到APC中来求即可试题解析:(1)如图,连接PCAC
展开阅读全文