佛山市中考数学试卷命题意图数学学科分析总结报告(DOC 23页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《佛山市中考数学试卷命题意图数学学科分析总结报告(DOC 23页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 佛山市中考数学试卷命题意图数学学科分析总结报告DOC 23页 佛山市 中考 数学试卷 命题 意图 数学 学科 分析 总结报告 DOC 23 下载 _模拟试题_中考复习_数学_初中
- 资源描述:
-
1、佛山市高中阶段学校招生考试数学学科分析总结报告一、命题依据1.中华人民共和国教育部颁发的全日制义务教育数学课程标准(2001版).2.中华人民共和国教育部颁发的全日制义务教育数学课程标准(2011版).3.佛山市教育局的佛山市2013年初中毕业生学业考试与高中阶段学校招生考试说明(数学科)、现行北师大版教材和佛山市初中数学学科的教学实际.二、命题原则1. 基础性考查内容依据标准,突出对学生基本数学素养的评价,体现基础性. 试题关注标准中最基础和最核心的内容,即所有学生在学习数学和应用数学解决问题过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用的技能. 所有试题求解过程中所涉及的知
2、识与技能以标准为依据,没有扩展范围与提高要求.2.公平性试题素材、求解方式等体现公平性,避免了需要特殊背景知识才能够理解的试题素材. 制订评分标准以开放和严谨的态度对待合理的解答形式,即充分尊重不同的解答方法和表述方式,又不失严谨性、合理性与可操作性.3.现实性试题背景应来源于学生所能理解的或所具有的生活现实、数学现实和其它学科现实.如第6题、10题、23题.4.有效性试卷尝试有效地反映学生的数学学习状况,并特别注意关注学生数学学习各个方面的考查,反映标准所倡导的数学活动方式. 如17题、20题、21题、22题、25题.5.合理性试卷的结构合理,题量适中,让学生有必要的思考时间,不出“偏”、“
3、怪”、“繁琐”、脱离实际和死记硬背的试题.6.导向性(1) 命题以标准和现行教材为依据,力争给初中数学教学正确的导向. 试题结合我市初中数学教学的实际,兼顾初中升学考试的选拔性,其部分试题的水平要求在初中毕业生学业考试的基础上适当提高.(2) 重视考查学生用数学的意识,考查学生提出问题、理解问题、并运用数学知识解决一些简单的实际问题的能力.(3) 关注学生获取数学信息、认识数学对象的基本过程与方法,关注在学习数学的活动过程中认识数学,掌握数学基本方法的能力.(4) 反对知识的扩大化,扩大化的知识第一类是原来初中应学而新课程不学的知识,第二类是高中、大学下放的知识,第三类是课本、资料或教师自己设
4、计的一些问题及其结论. 这三类知识的拓展在实际教学工作中已是普遍现象,考试如果不加以正确引导和制止而推波助澜,这对初中义务教育的伤害将是致命的!(5) 重视解题的规范性要求,希望通过数学科试题解答树立规范意识和规则意识,能够清晰地和有条理地表达思想,知道数学中解决任何问题都应有依据,理解并掌握数学的核心和基础知识.(6) 关注教材的考评价值. 对教师而言的教材,从学生方面来说应该称“课本”,显然这是学生学习材料的根本,一切资料都只能称“辅导资料”而处于附属地位. 然而现在的现象通常把资料作为教学的主要材料,把教材当作附属的,复习备考时尤甚,这是本末倒置!数学科命题以尽可能消除辅导资料为己任,实
5、现国家在课程和中长期教育发展纲要中所期望的减负目标,教师教的轻松,学生学的愉快,教与学相长,而且教学效益显著.关注教材,实际上是关注教学与学习的主体内容. 初中数学教学是奠基的阶段,但与小学的奠基阶段明显不同,这个阶段的学习内容包括了数扩充到实数(有理数简单无理数即代数数的一部分,是不完备的扩充)及运算的要求、代数的概念及其最基本的形式、代数式基本运算、明确了方程概念及其模型(基本的三类)思想和方法、不等关系的基本内容、函数与图象的相互关系、方程与函数及不等关系的相互联系、平面几何的基本对象与性质特征、平面几何对象的归类判断、几何基本对象的相互关系(构造或变换)、平面几何的学习方式与路径(操作
6、、观察、发现、猜想到证明)、合情推理及演绎推理、证明的基础知识(原名、定义、命题、命题的结构、真假命题、公理、定理、推论、证明以及反例、逆命题或逆定理等)与方法(证明的推理形式即三段论)、图形中的函数(三角函数)、离散数学(统计)与随机现象(概率)的更系统化,等等.关注教材,实际上是关注教与学的方式方法. 教材的编写特点,反映了对数学内容学习的整体构思,即从现实问题(含生活各方面和数学本身)的情境生成数学知识或数学问题学习新知识或研究新问题巩固应用新知识或解决新问题,在过程中提供了丰富的活动方式和过程性思考,也渗透了丰富的数学思想和方法,重视操作、观察、思考、分析、交流与评价等,重视数学知识、
7、技能和理解为一体,还能在现有要求的基础上进行适当的联系与拓广,不仅给了学生大量的学习体验,也如何和更好的学习数学对学生进行指引.关注教材,实际上更有利于高中阶段学习. 教材关注的是基础与核心的内容、基本的操作技能、基本的数学思想和方法、基本的研究与学习过程,能使学生学的全面、具体、系统、扎实与有效,更能培养学生的学科素养与学习能力,对将来的学习也能提供更大的帮助.(7) 尊重国家义务教育对学科教学的要求. 关注“四基”的全面考查,特别是对“基本的数学活动经验”的再现和迁移的考查,反映了教育的“他育功能”和“自育功能”,也就是常说的学习能力的培养.(8) 非常关注教师的专业发展. 这一特色在全国
8、各地的考试中都没有佛山市体现的这么明确具体. 具体从本卷来说,大家可以从后文18、19、22、25等题的命题意图说明中清楚的看到这一点.三、命题难度考试说明要求:试题按难度分为容易题、中等题和难题. 难度在0.7以上为容易题,难度在0.4到0.7之间为中等题,难度在0.4以下为难题. 根据佛山市初中毕业生学业考试与高中阶段学校招生考试的性质与要求,容易题、中等题和难题按3:6:1的分值比例,全卷难度控制在0.65左右.试卷中各部分考查内容所占分数的百分比与在教学中所占课时的百分比大致相同.实际上考虑到初中教学更应该重视奠基,所以容易题、中等题和难题按大约5:4:1的分值比例命制,全卷难度仍然控
9、制在0.65左右. 而考查内容按领域划分,代数的比重大于几何的比重,主要是考虑代数的内容基本上不重复,而几何更多的体现了螺旋上升的教材编写理念,部分内容在一定程度上有交叉重复.四、命题的设计意图逐题分析1 -2的相反数等于ABCD 考查要点:考查有理数中的相反数的概念. 定位为容易题.设计意图:初中的有理数是在小学算术数基础上数系的第一次扩张.首先引入负数的概念(事实上小学已有负数的基本认识,已经知道引入负数概念的必要性、重要意义,但没有运算),理解负数符号的意义和合理性;其次是正负两个数之间有关系(仅符号不同)时产生相反数;再次是说明有理数的几何意义(当然要先有数轴的概念)及绝对值概念;最后
10、研究运算的问题(一般是四则运算,数的表示类主要有整数、小数和分数,根据初中生的认知水平增加学习“乘方”这个新的表示类).与数相关的知识的学习是数学学习的重要内容,本题考查的是初中阶段的入门知识.2. 下列计算正确的是ABCD考查要点:考查幂的运算律. 定位为容易题.设计意图:本题考查幂的运算,来源于七年级下第一章,包括幂的乘法、乘积的幂、幂的乘方、幂的除法等关于幂的基本运算,用单一字母是相当于考查概括性的公式(运算法则或性质). 幂是数的表达形式和运算关系,幂及其运算是初中代数的基础之一,也是高中教学内容的奠基部分. 幂的意义和有关运算的理解是解决问题的关健,教学要给予足够重视.3如图是并排放
11、置的等底等高的圆锥与圆柱,则它的主视图是第3题图A BC D考查要点:考查简单几何体的视图,来源于九年级上第112页. 定位为容易题.设计意图:立体图形的截面(相当于某方向视图)和展开图是认识立体图形的重要依据,可以据此定性和定量并进一步认知图形的其它特征. 这方面的考查力度,能拓展学生空间想象能力,有利于高中学习立体几何.4分解因式的结果是AB CD考查要点:考查提取公因式法、公式法(平方差公式)分解因式. 定位为容易题.设计意图:因式分解是重要的数学知识,是数的分解在代数中的反映,是初中代数中的基本技能之一,对后续学习非常重要(解整式方程,分式运算中的整式部分处理,因式分解定理及其应用).
12、 因式分解有多种方法(整式也有多种形式),但根据现阶段的内容要求与学生认知水平,课标只限定了两种分解的方法,所以题目严格按照要求命制.在教学实践中发现,许多教师不满足于提公因式法和公式法的学习,往往加入十字相乘法、分组分解法,更有甚者在练习题中出现需要用到双十字相乘法的题目. 对学有余力的学生来说,适当的拓展是必要的,如何把握这个度是个关键. 既要充分调动学生学习数学的兴趣,鼓励学生主动学习,甚至给学有余力的学生更大的学习空间,也要防止将课标以外的内容大量的加进常规教学.另外,分解因式是在有理数范围内,且指数要求为正整数,所以题目分解结果最好能为一次式的积的形式. 教学时也可拓展到分解,课外可
13、拓展到分解,但中考会慎重!5 化简得ABCD考查要点:考查关于数的根式的除法运算和分母有理化. 定位为容易偏中等题.设计意图:今年考试说明中保留二次根式的分母有理化,略高于课本要求,主要有以下两个方面的思考:一方面,从学习的一般认识和数学系统(比如数域的公理化定义)来说,学习数,必然要学习数的运算. 因此,对于初中阶段学习的无理数(主要有四类:无限不循环小数,用于定义但难以举例;二次根式和三次根式表达但开不尽的形式,这种形式很明确,但被开方数要控制因为一个相当大的数的质因数分解比较困难,因此难以判断它是否可以开尽,而小数类似于大数的倒数;圆周率,现时所见的唯一的超越数;非有理数的三角函数形式,
14、这种形式的数难以说明,在教学上无需深究),必然要学习无理数的简单的四则运算. 但现在初中在无理数的运算类要求中基本上没有“除法”的运算,这是考虑到教学和考查时老师们可能会深挖!另一方面,在高中常规教学中没有这方面的教学,而是作为已经熟练掌握的基本技能,因此初中教学应尽可能的解决这个问题(人教版课本单列一节学习它).考虑到是新加考点,为简单起见设计了一道选择题,当然也可设计填空题或者解答题. 形如的化简是,关键是利用分母的对偶式(类似于复数的共轭).但本题不是简单的分式形式化简,而是给了“除法”的形式(这种类型与前面的类型相比,在教学中可能不会有较好的训练),有一点难度.6 掷一枚有正反面的均匀
15、硬币,正确的说法是A正面一定朝上B反面一定朝上C正面比反面朝上的概率大D正面和反面朝上的概率都是0.5考查要点:通过掷硬币这个基本的随机现象,考查随机事件、可能性及其大小、一步实验的概率计算. 定位为容易题.设计意图:关于掷硬币或类似的随机现象,理论上对实验对象和环境有要求,即实验结果与这两个要素有关. 比如“硬币有正反面、均匀”是对“掷硬币”的对象的要求. 如果只有正面,无论如何也不会掷出反面来;如果不均匀,“掷出正面”和“掷出反面”就不具有等可能性. 反之亦然.掷“有正反面、均匀”的硬币问题,主要有以下几种:考查随机现象、随机事件、可能性等基本概念;一步实验的概率问题. 如本题中的D;多步
16、实验的概率问题. 假设硬币有正反面且均匀,掷次硬币(掷法不同,理解有异,方法不同),正面朝上次数为的概率符合独立重复实验中的二项分布. 这样,掷100次正面都朝上的结果也是有可能发生的,只不过机会很小. 但在初中一般只要求解决掷两次或三次的问题,用列举的办法列出所有的实验结果来计算,不能用上面的公式;考查实验的独立性. 比如“掷硬币100次后再掷1次,这第101次实验正面朝上的概率是多少”的问题,问题的概率仍为0.5,第101次实验的结果与前面的结果无关. 实验的独立性是对概率的理性认识,高于现阶段的教学要求,建议在教学中尽量不要出这样的题.AO第7题图COBO怀疑实验对象和实验环境合理性的问
17、题. 比如“掷有正反面且均匀的硬币,掷100次都正面朝上有可能吗?再掷1次,正面还是反面朝上的可能性大?”类似的问题,可以有“第101次正面仍朝上的概率仍为0.5”、“硬币不是真的均匀,正面朝上的可能性大”、“没有投掷,可能只是正面朝上放下”等回答. 这类问题也是高于现阶段的教学要求.请阅读上面的说明,准确把握教学要求.7 如图,若,则大约是(精确到)ABCD考查要点:考查直角三角形的边角关系(锐角互余、含角的直角三角形中的直边与斜边关系、勾股定理、三角函数)、特殊角的三角函数、简单的近似计算等. 做题时首先应从图中获得直角的信息. 定位为容易题.设计意图:本题紧扣课程标准,以能力立意,可以认
18、为是解直角三角形,也可以认为是简单实际问题的模型构造及求解. 本题有多种思考途径,因解题思路的不同所涉及的知识呈广泛性.8 半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是A3B4CD考查要点:考查圆的定义与对称性、等腰三角形及其性质、三角形的高(或点到直线距离)、勾股定理. 定位为容易偏中等题.设计意图:本题未提“弦心距”概念,是因为课本没有这个概念. 本题未给图形,需要学生自己构造满足要求的图形,这部分知识学习的熟练程度及理解题意并作图的能力强弱会影响题目的解答.9 多项式的次数及最高次项的系数分别是A3,-3B2,-3C5,-3D2,3考查要点:考查整式的相关概念(多项式、项、系数、
19、次数). 定位为容易偏中等题.设计意图:多项式是代数的基础,多项式的构造形式、相关要素及识别判断是重要的学习内容.xOyxOyxOyxOy10某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家. 此人离家的距离与时间的关系的大致图象是A B C D考查要点:考查现实背景下的变量之间的变化关系、函数及图象. 定位为中等题.设计意图:本题综合考查了现实问题、现实问题的模型-函数及其相关知识、函数图象与现实意义的关系解释等,还涉及到速度、距离和路程三者之间的关系.11数字9 600 000用科学记数法表示为 .考查要点:考查大数的科学记数法. 定位为容易题. 设计意图:略.12方程
20、的解是 .考查要点:考查一元二次方程的形式识别与求解(配方法或公式法). 定位为容易题.设计意图:略.13在1、2、3、4四个数字中随机选两个不同的数字组成两位数,则组成的两位数大于40的概率是 .考查要点:考查两步实验的等可能事件的概率计算(列举法即树状图或列表). 与第6题相比要求高,体现了层次性. 由于是常见问题,故定位为容易题.设计意图:略.14图中圆心角,弦,延长CO与圆交于点D,则 .OABODOCO第14题图考查要点:考查平行线的性质(同位角、内错角等知识)、等腰三角形性质、圆心角与圆周角. 定位为容易偏中等题.设计意图:略.15“对顶角相等”是一个命题,它的条件是 .考查要点:
21、考查对顶角概念、命题及其结构. 定位为中等偏难题.设计意图:本题考察命题的相关知识. 命题是数学的核心概念之一,是数学学习必须掌握的基础知识,课标要求“会区分命题的条件和结论”,本题的条件比较隐避,需要敏锐的观察和对命题有充分的理解才能发现. 本题是命题的简约形式,相当于一个知识的称谓部分,它和其完整形式的表达都在课本里有反映,选用此题的目的一方面是引导课堂教学要重视课本,另一方面也降低了学生的应试难度(实际情况未必如此). 希望教学中慎重看待和分析命题的各种基本形式!16. 计算:.考查要点:考查有理数的相关概念、相关运算法则和运算律、运算顺序、整数次幂、负整数次幂、绝对值、符号法则等. 定
22、位为容易题.设计意图:中考题目中考查的有理数的运算问题,通常是小学没有学过的知识,具体说就是数的发展过程中不得不引入的新的数类与运算. 实际上,我们可以有更高的要求,也就是考查实数及其运算,而实数中除有理数外,现在主要有开平方(开立方)、三角函数值(几乎都是)、圆周率及符合无理数定义且有规律表达的数(如0.1010010001)等四种形式的数类(一般来说,符合无理数的定义但无法显性表达的无理数,或可不作为一类),而运算中所涉及的数通常只有前三类.关于有理数和简单根式的运算,需要关注数的各种表达方式(数的类型)、运算的类型、运算的顺序、运算法则与运算律等,我们希望初中学生能达到熟练的程度.三角函
展开阅读全文