青岛中考数学(平行四边形提高练习题)压轴题训练(DOC 22页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《青岛中考数学(平行四边形提高练习题)压轴题训练(DOC 22页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 青岛中考数学平行四边形提高练习题压轴题训练DOC 22页 青岛 中考 数学 平行四边形 提高 练习题 压轴 训练 DOC 22 下载 _中考其它_中考复习_数学_初中
- 资源描述:
-
1、一、平行四边形真题与模拟题分类汇编(难题易错题)1如图,在RtABC中,B=90,AC=60cm,A=60,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动设点D、E运动的时间是t秒(0t15)过点D作DFBC于点F,连接DE,EF(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,DEF为直角三角形?请说明理由【答案】(1)见解析;(2)能,t=10;(3)t=或12.【解析】【分析】(1)利用t表示出C
2、D以及AE的长,然后在直角CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)DEF为直角三角形,分EDF=90和DEF=90两种情况讨论.【详解】解:(1)证明:在RtABC中,C=90A=30,AB=AC=60=30cm,CD=4t,AE=2t,又在RtCDF中,C=30,DF=CD=2t,DF=AE;(2)能,DFAB,DF=AE,四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即604t=2t,解得:t=10,当t=10时,AEFD是菱形;(3)若DEF为直角
3、三角形,有两种情况:如图1,EDF=90,DEBC,则AD=2AE,即604t=22t,解得:t=,如图2,DEF=90,DEAC,则AE=2AD,即,解得:t=12,综上所述,当t=或12时,DEF为直角三角形.2(1)(问题发现)如图1,在RtABC中,ABAC2,BAC90,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为 (2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线
4、时候,直接写出线段AF的长【答案】(1)BE=AF;(2)无变化;(3)AF的长为1或+1【解析】试题分析:(1)先利用等腰直角三角形的性质得出AD= ,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出,同理得出,夹角相等即可得出ACFBCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论试题解析:(1)在RtABC中,AB=AC=2,根据勾股定理得,BC=AB=2,点D为BC的中点,AD=BC=,四边形CDEF是正方形,A
5、F=EF=AD=,BE=AB=2,BE=AF,故答案为BE=AF;(2)无变化;如图2,在RtABC中,AB=AC=2,ABC=ACB=45,sinABC=,在正方形CDEF中,FEC=FED=45,在RtCEF中,sinFEC=,FCE=ACB=45,FCEACE=ACBACE,FCA=ECB,ACFBCE, =,BE=AF,线段BE与AF的数量关系无变化;(3)当点E在线段AF上时,如图2,由(1)知,CF=EF=CD=,在RtBCF中,CF=,BC=2,根据勾股定理得,BF=,BE=BFEF=,由(2)知,BE=AF,AF=1,当点E在线段BF的延长线上时,如图3,在RtABC中,AB=
6、AC=2,ABC=ACB=45,sinABC=,在正方形CDEF中,FEC=FED=45,在RtCEF中,sinFEC= , ,FCE=ACB=45,FCB+ACB=FCB+FCE,FCA=ECB,ACFBCE, =,BE=AF,由(1)知,CF=EF=CD=,在RtBCF中,CF=,BC=2,根据勾股定理得,BF=,BE=BF+EF=+,由(2)知,BE=AF,AF=+1即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为1或+13(1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点处,若,则的度数为_.(2)小明手中有一张矩形纸片,.(画一画)如图2,点在这张矩形纸片的边
7、上,将纸片折叠,使落在所在直线上,折痕设为(点,分别在边,上),利用直尺和圆规画出折痕(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点分别落在点,处,若,求的长.【答案】(1)21;(2)画一画;见解析;算一算:【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA交CE的延长线由G,作BGC的角平分线交AD于M,交BC于N,直线MN即为所求;【算一算】首先求出GD=9-,由矩形的性质得出ADBC,BC=AD=9,由平行线的性质得出DGF=BFG,由翻折不变性可知
8、,BFG=DFG,证出DFG=DGF,由等腰三角形的判定定理证出DF=DG=,再由勾股定理求出CF,可得BF,再利用翻折不变性,可知FB=FB,由此即可解决问题【详解】(1)如图1所示:四边形ABCD是矩形,ADBC,ADB=DBC=42,由翻折的性质可知,DBE=EBC=DBC=21,故答案为21(2)【画一画】如图所示: 【算一算】如3所示:AG=,AD=9,GD=9-,四边形ABCD是矩形,ADBC,BC=AD=9,DGF=BFG,由翻折不变性可知,BFG=DFG,DFG=DGF,DF=DG=, CD=AB=4,C=90,在RtCDF中,由勾股定理得:CF=,BF=BC-CF=9,由翻折
9、不变性可知,FB=FB=,BD=DF-FB=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题4在平面直角坐标系中,O为原点,点A(6,0)、点C(0,6),若正方形OABC绕点O顺时针旋转,得正方形OABC,记旋转角为:(1)如图,当45时,求BC与AB的交点D的坐标;(2)如图,当60时,求点B的坐标;(3)若P为线段BC的中点,求AP长的取值范围(直接写出结果即可)【答案】(1);(2);(3).【解析】【分析】(1)当45时,延长OA经过点B,在RtBAD中,OBC4
10、5,AB,可求得BD的长,进而求得CD的长,即可得出点D的坐标;(2)过点C作x轴垂线MN,交x轴于点M,过点B作MN的垂线,垂足为N,证明OMCCNB,可得CNOM,BNCM3,即可得出点B的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC的中点,所以PKOC3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围【详解】解:(1)A(6,0)、C(0,6),O(0,0),四边形OABC是边长为6的正方形,当45时,如图,延长OA经过点B,OB6,OAOA6,OBC45,AB,BD(),CD6()=,BC与AB的交点D的坐标为(,6);(2)如图,过点C作
11、x轴垂线MN,交x轴于点M,过点B作MN的垂线,垂足为N,OCB90,OCM90BCNCBN,OCBC,OMCCNB90,OMCCNB(AAS),当60时,AOC90,OC6,COM30,CNOM,BNCM3,点B的坐标为;(3)如图,连接OB,AC相交于点K,则K是OB的中点,P为线段BC的中点,PKOC3,P在以K为圆心,3为半径的圆上运动,AK3,AP最大值为,AP的最小值为,AP长的取值范围为.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理(3)问解题的关键是利用中位线定理得出点P的轨迹5定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”性质:如果两个三
12、角形是“友好三角形”,那么这两个三角形的面积相等理解:如图,在ABC中,CD是AB边上的中线,那么ACD和BCD是“友好三角形”,并且SACD=SBCD应用:如图,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O(1)求证:AOB和AOE是“友好三角形”;(2)连接OD,若AOE和DOE是“友好三角形”,求四边形CDOF的面积探究:在ABC中,A=30,AB=4,点D在线段AB上,连接CD,ACD和BCD是“友好三角形”,将ACD沿CD所在直线翻折,得到ACD,若ACD与ABC重合部分的面积等于ABC面积的,请直接写出ABC的面积【答案】(1)见
13、解析;(2)12;探究:2或2【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得AOE和AOB是友好三角形;(2)AOE和DOE是“友好三角形”,即可得到E是AD的中点,则可以求得ABE、ABF的面积,根据S四边形CDOF=S矩形ABCD-2SABF即可求解探究:画出符合条件的两种情况:求出四边形ADCB是平行四边形,求出BC和AD推出ACB=90,根据三角形面积公式求出即可;求出高CQ,求出ADC的面积即可求出ABC的面积试题解析:(1)四边形ABCD是矩形,ADBC,AE=BF,四边形ABFE
14、是平行四边形,OE=OB,AOE和AOB是友好三角形(2)AOE和DOE是友好三角形,SAOE=SDOE,AE=ED=AD=3,AOB与AOE是友好三角形,SAOB=SAOE,AOEFOB,SAOE=SFOB,SAOD=SABF,S四边形CDOF=S矩形ABCD-2SABF=46-243=12探究:解:分为两种情况:如图1,SACD=SBCDAD=BD=AB,沿CD折叠A和A重合,AD=AD=AB=4=2,ACD与ABC重合部分的面积等于ABC面积的,SDOC=SABC=SBDC=SADC=SADC,DO=OB,AO=CO,四边形ADCB是平行四边形,BC=AD=2,过B作BMAC于M,AB=
15、4,BAC=30,BM=AB=2=BC,即C和M重合,ACB=90,由勾股定理得:AC=,ABC的面积是BCAC=22=2;如图2,SACD=SBCDAD=BD=AB,沿CD折叠A和A重合,AD=AD=AB=4=2,ACD与ABC重合部分的面积等于ABC面积的,SDOC=SABC=SBDC=SADC=SADC,DO=OA,BO=CO,四边形ABDC是平行四边形,AC=BD=2,过C作CQAD于Q,AC=2,DAC=BAC=30,CQ=AC=1,SABC=2SADC=2SADC=2ADCQ=221=2;即ABC的面积是2或2考点:四边形综合题6(1)问题发现:如图,在等边三角形ABC中,点M为B
展开阅读全文