重庆中考填空16题专项训练(附答案)反比例翻折(DOC 16页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《重庆中考填空16题专项训练(附答案)反比例翻折(DOC 16页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重庆中考填空16题专项训练附答案反比例翻折DOC 16页 重庆 中考 填空 16 专项 训练 答案 反比例 DOC 下载 _各科综合资料_初中
- 资源描述:
-
1、填空16题专项训练1如图,矩形AOBC的两边OC、OA分别位于x轴、y轴上,点B的坐标为(,2),D是CB边上的一点,将CDO沿直线OD翻折,使C点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是_ (1题图) (2题图)2如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=x+m于D、C两点,若直线y=x+m与y轴交于点A,与x轴相交于点B则ADBC的值为_3反比例函数y=的图象经过点(2,2)和(1,a)两点,则ak+k+a+1=_4如图,直线y=x+b与x轴交于点C,与反比例函数y=的图象相交于点A、B,若OC2OA2=10,则k=_ (
2、4题图) (5题图)5在反比例函数(x0)的图象上,有一系列点P1、P2、P3、Pn,若P1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2现分别过点P1、P2、P3、Pn作x轴与y轴的垂线段,构成若干个长方形如图所示,将图中阴影部分的面积从左到右依次记为S1、S2、S3、Sn,则S1+S2+S3+S2010=_6如图,已知点(1,3)在函数的图象上正方形ABCD的边BC在x轴上,点E是对角线BD的中点,函数的图象又经过A、E两点,则点E的横坐标为_ (6题图) (7题图)7如图,A、B是反比例函数y=上两点,ACy轴于C,BDx轴于D,AC=BD=OC,S四边形ABDC=14,
3、则k=_8直线y=2x4与x轴交于点A,与y轴交于点B,将线段AB绕着平面内的某个点旋转180后,得到点C、D,恰好落在反比例函数的图象上,且D、C两点横坐标之比为3:1,则k=_ (8题图) (9题图) 9如图,点A是函数的图象上的点,点B、C的坐标分别为B(,)、C(,)试利用性质:点“函数的图象上任意一点A都满足”求解下面问题:作BAC的内角平分线AE,过B作AE的垂线交AE于F已知当A在函数的图象上运动时,OF的长度总等于_10如图,直角梯形OABF中,OAB=B=90,A点在x轴上,双曲线y=过点F,与AB交于E点,连EF,若,SBEF=4,则k=_ (10题图) (11题图) 11
4、如图,直线交x轴于A,交y轴于B,交双曲线于C,A、D关于y轴对称,若S四OBCD=6,则k=_12如图,已知双曲线(x0)经过矩形OABC的边AB、BC上的点F、E,其中CE=CB,AF=AB,且四边形OEBF的面积为2,则k的值为_ (12题图) (13题图)13如图,正方形A1B1P1P2的顶点P1、P2在反比例函数y=(x0)的图象上,顶点A1、B1分别在x轴和y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x0)的图象上,顶点A2在x轴的正半轴上,则P2点的坐标为_,P3的坐标为_14两个反比例函数,在第一象限内的图象如图所示,点P1、P2在反比例函数图
5、象上,过点P1作x轴的平行线与过点P2作y轴的平行线相交于点N,若点N(m,n)恰好在的图象上,则NP1与NP2的乘积是_ (14题图) (15题图) 15如图,平行四边形ABCD的顶点A、C在双曲线y1=上,B、D在双曲线y2=上,k1=2k2(k10),ABy轴,SABCD=24,则k1=_16(2012连云港)如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x+b的解集是_(16题图) 17如图,点A(x1,y1)、B(x2,y2)都在双曲线上,且x2x1=4,y1y2=2;分别过点A、B向x轴、y轴作垂线段,垂足分别为C、D、E、F,AC与BF相交
6、于G点,四边形FOCG的面积为2,五边形AEODB的面积为14,那么双曲线的解析式为_ (17题图) (18题图) 18如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为_19(2007南通)如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=_20如图所示,直线AB与x轴交
7、于点A(3,0),与y轴交于点B(0,4),点P为双曲线(x0)上的一点,点P分别作x轴、y轴的垂线段PE、PF,当PE、PF分别与线段AB交于点C、D时(1)AB=_;(2)ADBC=_ (20题图) (21题图) 21如图,在以O为原点的直角坐标系中,点A、C分别在x轴、y轴的正半轴上,点B在第一象限,四边形OABC是矩形,反比例函数y=(x0)与AB相交于点D,与BC相交于点E,若BE=3CE,四边形ODBE的面积是9,则k=_2014年2月李玲的初中数学组卷参考答案与试题解析一填空题(共14小题)1(2007郑州模拟)如图,矩形AOBC的两边OC、OA分别位于x轴、y轴上,点B的坐标为
8、(,2),D是CB边上的一点,将CDO沿直线OD翻折,使C点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是y=考点:反比例函数综合题1587178专题:计算题分析:作EFCO于F,构造相似三角形EOF和BOC,利用勾股定理求出OB的长,根据相似三角形的性质求出EF的长,利用勾股定理求出OF的长,得到E的坐标,再利用待定系数法求出函数解析式解答:解:作EFCO于F点B的坐标为(,2),OB=5,OE=OC=,即,EF=2在RtEFO中,OF=1,E(1,2),代入函数解析式y=得,k=2(1)=2,函数解析式为y=点评:此题主要考查了利用待定系数法求反比例函数关
9、系式,折叠的性质,勾股定理,三角函数的应用,解决问题的关键是利用相似三角形的性质与勾股定理求出E点坐标2如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=x+m于D、C两点,若直线y=x+m与y轴交于点A,与x轴相交于点B则ADBC的值为2考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征1587178专题:压轴题;探究型分析:先设M点的坐标为(a,),则把y=代入直线y=x+m即可求出C点的纵坐标,同理可用a表示出D点坐标,再根据直线y=x+m的解析式可用m表示出A、B两点的坐标,再根据两点间的距离公式即可求出ADBC的值解答:解:设M点的坐标为(a,),则C
10、(m,)、D(a,ma),直线y=x+m与y轴交于点A,与x轴相交于点B,A(0,m)、B(m,0),ADBC=a=2故答案为:2点评:本题考查的是一次函数及反比例函数的性质,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键3反比例函数y=的图象经过点(2,2)和(1,a)两点,则ak+k+a+1=15考点:反比例函数图象上点的坐标特征1587178专题:函数思想分析:将点(2,2)和(1,a)分别代入反比例函数的解析式y=,列出关于k、a的方程组,然后解方程组求得k、a的值;最后将k、a的值代入所求的代数式并求值解答:解:反比例函数y=的图象经过点(2,2)和(1,a)两点
11、,解得,ak+k+a+1=16+44+1=15;故答案是:15点评:本题考查了反比例函数图象上点的坐标特征此题也可以将点(2,2)代入反比例函数解析式,求得k值;然后将点(1,a)代入函数解析式求得a值;最后将k、a的值代入所求的代数式并求值4如图,直线y=x+b与x轴交于点C,与反比例函数y=的图象相交于点A、B,若OC2OA2=10,则k=5考点:反比例函数与一次函数的交点问题1587178分析:过点A作AEx轴于点E,根据直线y=x+b可得ACE=45,从而判定出ACE是等腰直角三角形,然后根据反比例函数解析式设点A的坐标为(x,)表示出OE、OA、OC的长度,在RtAOE中,利用勾股定
12、理表示出OA的平方,然后代入已知条件整理即可得解解答:解:如图,过点A作AEx轴于点E,直线y=x+b与x轴交于点C,ACE=45,又点A在反比例函数y=的图象上,设点A坐标为(x,),则CE=AE=,在RtAOE中,OA2=OE2+AE2=x2+()2,又OC2=(OE+EC)2=(x+)2=x2+2k+()2,OC2OA2=x2+2k+()2x2()2=2k=10,解得k=5故答案为:5点评:本题考查了反比例函数与一次函数的交点问题,作出辅助线构造出等腰直角三角形以及直角三角形,用点A的横坐标与纵坐标分别表示出OA、OC的平方是解题的关键,此题设计巧妙5在反比例函数(x0)的图象上,有一系
13、列点P1、P2、P3、Pn,若P1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2现分别过点P1、P2、P3、Pn作x轴与y轴的垂线段,构成若干个长方形如图所示,将图中阴影部分的面积从左到右依次记为S1、S2、S3、Sn,则S1+S2+S3+S2010=考点:反比例函数综合题1587178专题:计算题;综合题分析:易求得P1的坐标得到矩形P1AOB的面积;而把所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1AOB的面积,即可得到答案解答:解:如图,过点P1、点P2010作y轴的垂线段,垂足分别是点B、点C,过点P1作x轴的垂线段,垂足是点E,P1E交CP2010于点A,
展开阅读全文