书签 分享 收藏 举报 版权申诉 / 105
上传文档赚钱

类型最新挑战中考数学压轴题(第七版精选)(DOC 103页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5696220
  • 上传时间:2023-05-04
  • 格式:DOC
  • 页数:105
  • 大小:12.78MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《最新挑战中考数学压轴题(第七版精选)(DOC 103页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    最新挑战中考数学压轴题第七版精选DOC 103页 最新 挑战 中考 数学 压轴 第七 精选 DOC 103 下载 _各科综合资料_初中
    资源描述:

    1、学习-好资料第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题 例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy中,顶点为M的抛物线yax2bx(a0)经过点A和x轴正半轴上的点B,AOBO2,AOB120(1)求这条抛物线的表达式;(2)连结OM,求AOM的大小;(3)如果点C在x轴上,且ABC与AOM相似,求点C的坐标图1 满分解答(1)如图2,过点A作AHy轴,垂足为H在RtAOH中,AO2,AOH30,所以AH1,OH所以A因为抛物线与x轴交于O、B(2,0)两点,设yax(x2),代入点A,可得 图2所以抛物线的表达式为(2)由,得抛物线的顶点M的坐

    2、标为所以所以BOM30所以AOM150(3)由A、B(2,0)、M,得,所以ABO30,因此当点C在点B右侧时,ABCAOM150ABC与AOM相似,存在两种情况:如图3,当时,此时C(4,0)如图4,当时,此时C(8,0) 图3 图4考点伸展在本题情境下,如果ABC与BOM相似,求点C的坐标如图5,因为BOM是30底角的等腰三角形,ABO30,因此ABC也是底角为30的等腰三角形,ABAC,根据对称性,点C的坐标为(4,0)图5例2 2012年苏州市中考第29题如图1,已知抛物线(b是实数且b2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C(1)点B的坐标为_

    3、,点C的坐标为_(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得QCO、QOA和QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由图1满分解答(1)B的坐标为(b, 0),点C的坐标为(0, )(2)如图2,过点P作PDx轴,PEy轴,垂足分别为D、E,那么PDBPEC因此PDPE设点P的坐标为(x, x)如图3,联结OP所以S四边形PCOBSP

    4、COSPBO2b解得所以点P的坐标为()图2 图3(3)由,得A(1, 0),OA1如图4,以OA、OC为邻边构造矩形OAQC,那么OQCQOA当,即时,BQAQOA所以解得所以符合题意的点Q为()如图5,以OC为直径的圆与直线x1交于点Q,那么OQC90。因此OCQQOA当时,BQAQOA此时OQB90所以C、Q、B三点共线因此,即解得此时Q(1,4)图4 图5考点伸展第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而QOA与QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况这样,先根据QOA与QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B

    5、的位置如图中,圆与直线x1的另一个交点会不会是符合题意的点Q呢?如果符合题意的话,那么点B的位置距离点A很近,这与OB4OC矛盾例3 2012年黄冈市中考模拟第25题如图1,已知抛物线的方程C1: (m0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BHEH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与BCE相似?若存在,求m的值;若不存在,请说明理由图1满分解答(1)将M(2, 2

    6、)代入,得解得m4(2)当m4时,所以C(4, 0),E(0, 2)所以SBCE(3)如图2,抛物线的对称轴是直线x1,当H落在线段EC上时,BHEH最小设对称轴与x轴的交点为P,那么因此解得所以点H的坐标为(4)如图3,过点B作EC的平行线交抛物线于F,过点F作FFx轴于F由于BCEFBC,所以当,即时,BCEFBC设点F的坐标为,由,得解得xm2所以F(m2, 0)由,得所以由,得整理,得016此方程无解图2 图3 图4如图4,作CBF45交抛物线于F,过点F作FFx轴于F,由于EBCCBF,所以,即时,BCEBFC在RtBFF中,由FFBF,得解得x2m所以F所以BF2m2,由,得解得综

    7、合、,符合题意的m为考点伸展第(4)题也可以这样求BF的长:在求得点F、F的坐标后,根据两点间的距离公式求BF的长例4 2010年义乌市中考第24题如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2)用含S的代数式表示x2x1,并求出当S=36时点A1的坐标;(3)在图1中,

    8、设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由 图1 图2满分解答(1)抛物线的对称轴为直线,解析式为,顶点为M(1,)(2) 梯形O1A1B1C1的面积,由此得到由于,所以整理,得因此得到当S=36时, 解得 此时点A1的坐标为(6,3)(3)设直线AB与PQ交

    9、于点G,直线AB与抛物线的对称轴交于点E,直线PQ与x轴交于点F,那么要探求相似的GAF与GQE,有一个公共角G在GEQ中,GEQ是直线AB与抛物线对称轴的夹角,为定值在GAF中,GAF是直线AB与x轴的夹角,也为定值,而且GEQGAF因此只存在GQEGAF的可能,GQEGAF这时GAFGQEPQD由于,所以解得 图3 图4考点伸展第(3)题是否存在点G在x轴上方的情况?如图4,假如存在,说理过程相同,求得的t的值也是相同的事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3例5 2009年临沂市中考第26题如图1,抛物线经过点A(4,0)、B(1,0)、C(0,2)三点(1)求此抛物

    10、线的解析式;(2)P是抛物线上的一个动点,过P作PMx轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得DCA的面积最大,求出点D的坐标,图1满分解答 (1)因为抛物线与x轴交于A(4,0)、B(1,0)两点,设抛物线的解析式为,代入点C的 坐标(0,2),解得所以抛物线的解析式为(2)设点P的坐标为如图2,当点P在x轴上方时,1x4,如果,那么解得不合题意如果,那么解得此时点P的坐标为(2,1)如图3,当点P在点A的右侧时,x4,解方程,得此时点P的坐标为解方程,得不

    11、合题意如图4,当点P在点B的左侧时,x1,解方程,得此时点P的坐标为解方程,得此时点P与点O重合,不合题意综上所述,符合条件的 点P的坐标为(2,1)或或 图2 图3 图4(3)如图5,过点D作x轴的垂线交AC于E直线AC的解析式为设点D的横坐标为m,那么点D的坐标为,点E的坐标为所以因此当时,DCA的面积最大,此时点D的坐标为(2,1) 图5 图6考点伸展第(3)题也可以这样解:如图6,过D点构造矩形OAMN,那么DCA的面积等于直角梯形CAMN的面积减去CDN和ADM的面积设点D的横坐标为(m,n),那么由于,所以例6 2008年苏州市中考第29题图1满分解答(1),(2)由抛物线的解析式

    12、,得点M的坐标为,点N的坐标为因此MN的中点D的坐标为(2,0),DN3因为AOB是等腰直角三角形,如果DNE与AOB相似,那么DNE也是等腰直角三角形如图2,如果DN为直角边,那么点E的坐标为E1(2,3)或E2(2,3)将E1(2,3)代入,求得此时抛物线的解析式为将E2(2,3)代入,求得此时抛物线的解析式为如果DN为斜边,那么点E的坐标为E3或E4将E3代入,求得此时抛物线的解析式为将E4代入,求得此时抛物线的解析式为 图2 图3对于点E为E1(2,3)和E3,直线NE是相同的,ENP45又OBP45,PP,所以POBPGN因此对于点E为E2(2,3)和E4,直线NE是相同的此时点G在

    13、直线的右侧,又,所以考点伸展在本题情景下,怎样计算PB的长?如图3,作AFAB交OP于F,那么OBCOAF,OFOC,PF,PA,所以1.2 因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题如图1,在RtABC中,A90,AB6,AC8,点D为边BC的中点,DEBC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且PDQ90(1)求ED、EC的长;(2)若BP2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若PDF为等腰三角形,求BP的长图1 备用图满分解答(1)在RtABC中, AB6,AC8,所以BC10在RtCDE中,CD5,所以,(2)如图

    14、2,过点D作DMAB,DNAC,垂足分别为M、N,那么DM、DN是ABC的两条中位线,DM4,DN3由PDQ90,MDN90,可得PDMQDN因此PDMQDN所以所以,图2 图3 图4如图3,当BP2,P在BM上时,PM1此时所以如图4,当BP2,P在MB的延长线上时,PM5此时所以(3)如图5,如图2,在RtPDQ中,在RtABC中,所以QPDC由PDQ90,CDE90,可得PDFCDQ因此PDFCDQ当PDF是等腰三角形时,CDQ也是等腰三角形如图5,当CQCD5时,QNCQCN541(如图3所示)此时所以如图6,当QCQD时,由,可得所以QNCNCQ(如图2所示)此时所以不存在DPDF的

    15、情况这是因为DFPDQPDPQ(如图5,图6所示)图5 图6考点伸展如图6,当CDQ是等腰三角形时,根据等角的余角相等,可以得到BDP也是等腰三角形,PBPD在BDP中可以直接求解例2 2012年扬州市中考第27题如图1,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由图1 满分解答(1)因为抛物线与x轴交于A(1,0)、B(3, 0)两

    16、点,设ya(x1)(x3),代入点C(0 ,3),得3a3解得a1所以抛物线的函数关系式是y(x1)(x3)x22x3(2)如图2,抛物线的对称轴是直线x1当点P落在线段BC上时,PAPC最小,PAC的周长最小设抛物线的对称轴与x轴的交点为H由,BOCO,得PHBH2所以点P的坐标为(1, 2)图2(3)点M的坐标为(1, 1)、(1,)、(1,)或(1,0)考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m)在MAC中,AC210,MC21(m3)2,MA24m2如图3,当MAMC时,MA2MC2解方程4m21(m3)2,得m1此时点M的坐标为(1, 1)如图4,当AMAC时,AM

    17、2AC2解方程4m210,得此时点M的坐标为(1,)或(1,)如图5,当CMCA时,CM2CA2解方程1(m3)210,得m0或6当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0)图3 图4 图5例3 2012年临沂市中考第26题如图1,点A在x轴上,OA4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由图1满分解答(1)如图2,过点B作BCy轴,垂足为C在RtOBC中,BOC3

    18、0,OB4,所以BC2,所以点B的坐标为(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为yax(x4),代入点B,解得所以抛物线的解析式为(3)抛物线的对称轴是直线x2,设点P的坐标为(2, y)当OPOB4时,OP216所以4+y216解得当P在时,B、O、P三点共线(如图2)当BPBO4时,BP216所以解得当PBPO时,PB2PO2所以解得综合、,点P的坐标为,如图2所示图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D,那么DOA与OAB是两个相似的等腰三角形由,得抛物线的顶点为因此所以DOA30,ODA120例4 2011年盐城市中考第28题如图1,已知一次函数y

    19、x7与正比例函数 的图象交于点A,且与x轴交于点B(1)求点A和点B的坐标;(2)过点A作ACy轴于点C,过点B作直线l/y轴动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q当点P到达点A时,点P和直线l都停止运动在运动过程中,设动点P运动的时间为t秒当t为何值时,以A、P、R为顶点的三角形的面积为8?是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由 图1 满分解答(1)解方程组 得 所以点A的坐标是(3,4)令,得所以点B的坐标是(7

    20、,0)(2)如图2,当P在OC上运动时,0t4由,得整理,得解得t2或t6(舍去)如图3,当P在CA上运动时,APR的最大面积为6因此,当t2时,以A、P、R为顶点的三角形的面积为8图2 图3 图4我们先讨论P在OC上运动时的情形,0t4如图1,在AOB中,B45,AOB45,OB7,所以OBAB因此OABAOBB如图4,点P由O向C运动的过程中,OPBRRQ,所以PQ/x轴因此AQP45保持不变,PAQ越来越大,所以只存在APQAQP的情况此时点A在PQ的垂直平分线上,OR2CA6所以BR1,t1我们再来讨论P在CA上运动时的情形,4t7在APQ中, 为定值,如图5,当APAQ时,解方程,得

    21、如图6,当QPQA时,点Q在PA的垂直平分线上,AP2(OROP)解方程,得如7,当PAPQ时,那么因此解方程,得综上所述,t1或或5或时,APQ是等腰三角形 图5 图6 图7考点伸展当P在CA上,QPQA时,也可以用来求解例5 2010年南通市中考第27题如图1,在矩形ABCD中,ABm(m是大于0的常数),BC8,E为线段BC上的动点(不与B、C重合)连结DE,作EFDE,EF与射线BA交于点F,设CEx,BFy(1)求y关于x的函数关系式; (2)若m8,求x为何值时,y的值最大,最大值是多少?(3)若,要使DEF为等腰三角形,m的值应为多少?图1满分解答(1)因为EDC与FEB都是DE

    22、C的余角,所以EDCFEB又因为CB90,所以DCEEBF因此,即整理,得y关于x的函数关系为(2)如图2,当m8时,因此当x4时,y取得最大值为2(3) 若,那么整理,得解得x2或x6要使DEF为等腰三角形,只存在EDEF的情况因为DCEEBF,所以CEBF,即xy将xy 2代入,得m6(如图3);将xy 6代入,得m2(如图4) 图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如:由第(1)题得到,那么不论m为何值,当x4时,y都取得最大值对应的几何意义是,不论AB边为多长,当E是BC的中点时,BF都取得最大值第(2)题m8是第(1)题一般性结论的一个特殊性再如,不论m为小

    23、于8的任何值,DEF都可以成为等腰三角形,这是因为方程总有一个根的第(3)题是这个一般性结论的一个特殊性例 6 2009年江西省中考第25题如图1,在等腰梯形ABCD中,AD/BC,E是AB的中点,过点E作EF/BC交CD于点F,AB4,BC6,B60(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PMEF交BC于M,过M作MN/AB交折线ADC于N,连结PN,设EPx当点N在线段AD上时(如图2),PMN的形状是否发生改变?若不变,求出PMN的周长;若改变,请说明理由;当点N在线段DC上时(如图3),是否存在点P,使PMN为等腰三角形?若存在,请求出所有满足条件的x的值;

    24、若不存在,请说明理由 图1 图2 图3满分解答(1)如图4,过点E作EGBC于G在RtBEG中,B60,所以,所以点E到BC的距离为(2)因为AD/EF/BC,E是AB的中点,所以F是DC的中点因此EF是梯形ABCD的中位线,EF4如图4,当点N在线段AD上时,PMN的形状不是否发生改变过点N作NHEF于H,设PH与NM交于点Q在矩形EGMP中,EPGMx,PMEG在平行四边形BMQE中,BMEQ1x所以BGPQ1因为PM与NH平行且相等,所以PH与NM互相平分,PH2PQ2在RtPNH中,NH,PH2,所以PN在平行四边形ABMN中,MNAB4因此PMN的周长为4 图4 图5当点N在线段DC

    25、上时,CMN恒为等边三角形如图5,当PMPN时,PMC与PNC关于直线PC对称,点P在DCB的平分线上在RtPCM中,PM,PCM30,所以MC3此时M、P分别为BC、EF的中点,x2如图6,当MPMN时,MPMNMC,xGMGCMC5如图7,当NPNM时,NMPNPM30,所以PNM120又因为FNM120,所以P与F重合此时x4综上所述,当x2或4或5时,PMN为等腰三角形 图6 图7 图8考点伸展第(2)题求等腰三角形PMN可以这样解:如图8,以B为原点,直线BC为x轴建立坐标系,设点M的坐标为(m,0),那么点P的坐标为(m,),MNMC6m,点N的坐标为(,)由两点间的距离公式,得当

    26、PMPN时,解得或此时当MPMN时,解得,此时当NPNM时,解得,此时1.3 因动点产生的直角三角形问题例1 2013年山西省中考第26题如图1,抛物线与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q(1)求点A、B、C的坐标;(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由;(3)当点P在线段EB上运动时,是否存在点Q,使BDQ为直角三角形

    27、,若存在,请直接写出点Q的坐标;若不存在,请说明理由图1 满分解答(1)由,得A(2,0),B(8,0),C(0,4)(2)直线DB的解析式为由点P的坐标为(m, 0),可得,所以MQ当MQDC8时,四边形CQMD是平行四边形解方程,得m4,或m0(舍去)此时点P是OB的中点,N是BC的中点,N(4,2),Q(4,6)所以MNNQ4所以BC与MQ互相平分所以四边形CQBM是平行四边形图2 图3(3)存在两个符合题意的点Q,分别是(2,0),(6,4)考点伸展第(3)题可以这样解:设点Q的坐标为如图3,当DBQ90时, 所以解得x6此时Q(6,4)如图4,当BDQ90时, 所以解得x2此时Q(2

    28、,0)图3 图4例1 2012年广州市中考第24题如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式图1 满分解答(1)由,得抛物线与x轴的交点坐标为A(4, 0)、B(2, 0)对称轴是直线x1(2)ACD与ACB有公共的底边AC,当ACD的面积等于ACB的面积时,点B、D到直线AC的距离相等过点B作AC的平行线交抛物线的对称轴于点D,在

    29、AC的另一侧有对应的点D设抛物线的对称轴与x轴的交点为G,与AC交于点H由BD/AC,得DBGCAO所以所以,点D的坐标为因为AC/BD,AGBG,所以HGDG而DHDH,所以DG3DG所以D的坐标为图2 图3(3)过点A、B分别作x轴的垂线,这两条垂线与直线l总是有交点的,即2个点M以AB为直径的G如果与直线l相交,那么就有2个点M;如果圆与直线l相切,就只有1个点M了联结GM,那么GMl在RtEGM中,GM3,GE5,所以EM4在RtEM1A中,AE8,所以M1A6所以点M1的坐标为(4, 6),过M1、E的直线l为根据对称性,直线l还可以是考点伸展第(3)题中的直线l恰好经过点C,因此可

    30、以过点C、E求直线l的解析式在RtEGM中,GM3,GE5,所以EM4在RtECO中,CO3,EO4,所以CE5因此三角形EGMECO,GEMCEO所以直线CM过点C例3 2012年杭州市中考第22题在平面直角坐标系中,反比例函数与二次函数yk(x2x1)的图象交于点A(1,k)和点B(1,k)(1)当k2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当ABQ是以AB为斜边的直角三角形时,求k的值满分解答(1)因为反比例函数的图象过点A(1,k),所以反比例函数的解析式是当k2时,反比例函数的解

    31、析式是(2)在反比例函数中,如果y随x增大而增大,那么k0当k0时,抛物线的开口向下,在对称轴左侧,y随x增大而增大抛物线yk(x2x1)的对称轴是直线 图1所以当k0且时,反比例函数与二次函数都是y随x增大而增大(3)抛物线的顶点Q的坐标是,A、B关于原点O中心对称,当OQOAOB时,ABQ是以AB为直径的直角三角形由OQ2OA2,得解得(如图2),(如图3)图2 图3考点伸展如图4,已知经过原点O的两条直线AB与CD分别与双曲线(k0)交于A、B和C、D,那么AB与CD互相平分,所以四边形ACBD是平行四边形问平行四边形ABCD能否成为矩形?能否成为正方形?如图5,当A、C关于直线yx对称

    32、时,AB与CD互相平分且相等,四边形ABCD是矩形因为A、C可以无限接近坐标系但是不能落在坐标轴上,所以OA与OC无法垂直,因此四边形ABCD不能成为正方形图4 图5例4 2011年浙江省中考第23题设直线l1:yk1xb1与l2:yk2xb2,若l1l2,垂足为H,则称直线l1与l2是点H的直角线(1)已知直线;和点C(0,2),则直线_和_是点C的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7)、C(0,7),P为线段OC上一点,设过B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2是点P的直角线,求直线l1与l2的解析式

    33、图1答案(1)直线和是点C的直角线(2)当APB90时,BCPPOA那么,即解得OP6或OP1如图2,当OP6时,l1:, l2:y2x6如图3,当OP1时,l1:y3x1, l2:图2 图3例5 2010年北京市中考第24题在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上(1)求点B的坐标;(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得EDPE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动)当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;若点

    34、P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动)过Q作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FMQF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动)若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值图1满分解答(1) 因为抛物线经过原点,所以 解得,(舍去)因此所以点B的坐标为(2,4)(2) 如图4,设OP的长为t,那么PE2t,EC2t,点C的坐标为(3t, 2t)当点C落在抛物线上时,解得

    35、如图1,当两条斜边PD与QM在同一条直线上时,点P、Q重合此时3t10解得如图2,当两条直角边PC与MN在同一条直线上,PQN是等腰直角三角形,PQPE此时解得如图3,当两条直角边DC与QN在同一条直线上,PQC是等腰直角三角形,PQPD此时解得 图1 图2 图3考点伸展在本题情境下,如果以PD为直径的圆E与以QM为直径的圆F相切,求t的值如图5,当P、Q重合时,两圆内切,如图6,当两圆外切时, 图4 图5 图6例6 2009年嘉兴市中考第24题如图1,已知A、B是线段MN上的两点,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设(1)求x的取值范围

    36、;(2)若ABC为直角三角形,求x的值;(3)探究:ABC的最大面积?图1满分解答(1)在ABC中,所以 解得(2)若AC为斜边,则,即,此方程无实根若AB为斜边,则,解得,满足若BC为斜边,则,解得,满足因此当或时,ABC是直角三角形(3)在ABC中,作于D,设,ABC的面积为S,则如图2,若点D在线段AB上,则移项,得两边平方,得整理,得两边平方,得整理,得所以()当时(满足),取最大值,从而S取最大值 图2 图3如图3,若点D在线段MA上,则同理可得,()易知此时综合得,ABC的最大面积为考点伸展第(3)题解无理方程比较烦琐,迂回一下可以避免烦琐的运算:设,例如在图2中,由列方程整理,得所以因此例 7 2008年河南省中考第23题如图1,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0)(1)试说明ABC是

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:最新挑战中考数学压轴题(第七版精选)(DOC 103页).doc
    链接地址:https://www.163wenku.com/p-5696220.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库