书签 分享 收藏 举报 版权申诉 / 59
上传文档赚钱

类型第二章-概率-复习与小结(苏教版选修2-3)课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:5695903
  • 上传时间:2023-05-03
  • 格式:PPT
  • 页数:59
  • 大小:2.37MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第二章-概率-复习与小结(苏教版选修2-3)课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第二 概率 复习 小结 苏教版 选修 课件
    资源描述:

    1、2.1随机变量及其概率分布 一般地,如果随机试验的结果,一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的可以用一个变量来表示,那么这样的变量叫做变量叫做随机变量随机变量。通常用大写拉丁字母通常用大写拉丁字母X,Y,Z(或小写希腊或小写希腊字母字母,);用小写拉丁字用小写拉丁字x,y,z(加上适当加上适当下标)等表示随机变量取的可能值。下标)等表示随机变量取的可能值。建构数学建构数学随机变量就是建立了一个从试验结果的随机变量就是建立了一个从试验结果的集合到实数集合的映射。集合到实数集合的映射。一般地,假定随机变量一般地,假定随机变量X有有n个不个不同的取值,它们分别是同的取值,它们分

    2、别是x1,x2,,xn,且,且 P(X=xi)=pi,i=1,2,3,n,则称则称为随机变量为随机变量X的的概率分布列概率分布列,简,简称为称为X的分布列的分布列。Xx1x2xnPp1p2pn可以用下表表示:可以用下表表示:我们将这个表称为随机变量我们将这个表称为随机变量X的概率分布的概率分布表。它和都叫做随机变量表。它和都叫做随机变量X X的概率分布的概率分布。p p00p p1 1+p+p2 2+p+pn n=1=1例、从装有6只白球和4只红球的口袋中任取一只球,用X表示“取到的白球个数”,求随机变量X的概率分布注:我们把这一类分布称为0-1分布或两点分布,并记为X0-1分布或X两点分布。

    3、“”表示服从。例例 同时掷两颗质地均匀的骰子,同时掷两颗质地均匀的骰子,观察观察朝上一面出现的点数,求两颗骰子中出现朝上一面出现的点数,求两颗骰子中出现的最大点数的最大点数X的概率分布,并求的概率分布,并求X大于大于2小小于于5的概率的概率P(2X0,我们将这样的试验称为我们将这样的试验称为n次次独立重复试验独立重复试验,也称为也称为伯努利试验伯努利试验(Bernoulli trials).,2,1,0()1()(nkPPCkPknkknn在在 n 次独立重复试验中,如果事件次独立重复试验中,如果事件在其中次试验中发生的概率是在其中次试验中发生的概率是,那么在那么在n次独立重复试验中这个事件恰

    4、次独立重复试验中这个事件恰好发生好发生 k 次的概率是次的概率是:1).公式适用的条件公式适用的条件2).公式的结构特征公式的结构特征knkknnppCkP )1()((其中(其中k=0,1,2,n)实验总次数实验总次数事件事件 A 发生的次数发生的次数事件事件 A 发生的概率发生的概率发生的概率发生的概率事件事件A意义理解意义理解变式变式5.5.填写下列表格:填写下列表格:()(1)kknknPXkCpp(其中(其中k=0,1,2,n)随机变量随机变量X的分布列的分布列:与二项式定与二项式定理有联系吗理有联系吗?),(pnX记为练习:练习:某气象站天气预报的准确率为某气象站天气预报的准确率为

    5、 80%80%(保留(保留2 2个个有效数字)计算有效数字)计算:(1 1)5 5次预报中恰有次预报中恰有4 4次准确的概率次准确的概率(2 2)5 5次预报中至少有次预报中至少有4 4次准确的概率次准确的概率 电灯泡使用寿命在电灯泡使用寿命在 1000 1000 小时以上的概率小时以上的概率为为 0.20.2,求,求3 3个灯泡在使用个灯泡在使用10001000小时后,最多小时后,最多 有一只坏了的概率。有一只坏了的概率。一般地,若离散型随机变量一般地,若离散型随机变量X X的概率分布为的概率分布为 则称则称 E(X)E(X)x x1 1p p1 1x x2 2p p2 2x xn np p

    6、n n为为X X的的均值均值或或数学数学期望期望,记为,记为E(X)E(X)或或Xx1x2xnPp1p2pn其中其中p pi i00,i i1,2,1,2,n,n;p p1 1p p2 2p pn n1 11、离散型随机变量的均值的定义、离散型随机变量的均值的定义若若XH(n,M,N)XH(n,M,N)则则E(X)E(X)NnM若若XB(n,p)XB(n,p)则则E(X)E(X)npnp2、两个分布的数学期望、两个分布的数学期望练习:练习:1、已知随机变量、已知随机变量 的分布列为的分布列为012345P0.10.20.30.20.10.1求求E()2、抛掷一枚硬币,规定正面向上得、抛掷一枚硬

    7、币,规定正面向上得1分,反面向分,反面向 上得上得1分,求得分分,求得分X的数学期望。的数学期望。2.303、随机抛掷一个骰子,求所得骰子点数、随机抛掷一个骰子,求所得骰子点数X的数学的数学期望期望E(X)。3.5例例 从批量较大的成品中随机取出从批量较大的成品中随机取出1010件产品进行质量件产品进行质量检查,若这批产品的不合格品率为检查,若这批产品的不合格品率为0.050.05,随机变量,随机变量X X表示这表示这1010件产品中的不合格品数,求随机变量件产品中的不合格品数,求随机变量X X的数的数学期望学期望E(X)E(X)考察考察0 01 1分布分布X01P1 ppE(X)E(X)0

    8、0(1p)1pp若若XH(n,M,N)XH(n,M,N)则则E(X)E(X)NnM若若XB(n,p)XB(n,p)则则E(X)E(X)npnp离散型随机变量的方差与标准差离散型随机变量的方差与标准差 对于离散型随机变量对于离散型随机变量X的概率分布如下表,的概率分布如下表,(其中其中pi0,i1,2,n;p1p2pn1)Xx1x2xnPp1p2pn 设设E(X),则,则(xi)2描述了描述了xi(i=1,2,.,n)相对于均相对于均值值的偏离程度,故的偏离程度,故(x1)2 p1(x2)2 p2.(xn)2pn称为离散型随机变量称为离散型随机变量X的的方差方差,记为,记为V(X)或或2离散型随

    9、机变量离散型随机变量X的的标准差标准差:)(XV例例设随机变量设随机变量X X的分布列为的分布列为 X X 1 1 2 2 n n P P n1 n1 n1 求求 V V(X)(X)E(X)(1+2+.+n)n121nV(V(X)nknkn12)21(1nkknknn1224)1(4)1(411212n故故V(X)2)21(16)12)(1(nnnnnV(X)niiipx12)(niiiiiippxpx122)2(niiipx122 1212n考察考察0 01 1分布分布X01P1 ppE(X)E(X)0 0(1p)1pp方差方差V(X)(0p)2(1p)(1p)2pp(1p)标准差标准差)1

    10、()(ppXV若若XH(n,M,N)XH(n,M,N)则则V(X)V(X)1()(2NNnNMNnM若若XB(n,p)XB(n,p)则则V(X)V(X)np(1np(1p)p)频率频率组距组距产品产品尺寸尺寸(mm)ab 若数据无限增多且组距无限缩小,那么若数据无限增多且组距无限缩小,那么频率分布频率分布直方图的顶边缩小乃至形成一条光滑的曲线,我们称直方图的顶边缩小乃至形成一条光滑的曲线,我们称此曲线为此曲线为概率密度曲线概率密度曲线总体在区间总体在区间 内取值的概率内取值的概率),(ba概率密度曲线概率密度曲线概率密度曲线概率密度曲线的形状特征的形状特征“中间高,两头低,中间高,两头低,左右

    11、对称左右对称”知识点一:正态密度曲线知识点一:正态密度曲线 上图中概率密度曲线具有上图中概率密度曲线具有“中间高,两头中间高,两头低低”的特征,像这种类型的概率密度曲线的特征,像这种类型的概率密度曲线,叫叫做做“正态密度曲线正态密度曲线”,它的函数表达式是,它的函数表达式是知识点二:正态分布与密度曲线知识点二:正态分布与密度曲线 式中的实数式中的实数,(0)是参数)是参数,分别表示总体的分别表示总体的平均数与标准差平均数与标准差.不同的不同的 ,对应着不同的正态密度对应着不同的正态密度曲线曲线RxexPx,21)(222)((1)当 =时,函数值为最大.(3)的图象关于 对称.(2)的值域为

    12、(4)当 时 为增函数.当 时 为减函数.)(xf)(xfxxx)(xf)(xf正态密度曲线的图像特征21,0((,(,+)xX=正态曲线=xRxexPx,21)(222)(正态密度曲线正态密度曲线ms 均均值值 表表明明了了总总体体的的重重心心所所在在,标标准准差差 表表明明了了总总体体的的离离散散程程度度。0.512一定O动画演示动画演示(1)(1)曲线在曲线在x x轴上方轴上方,与与x x轴不相交轴不相交.(2)(2)曲线关于直线曲线关于直线x=x=对称对称.(3)(3)在在x=x=时位于最高点时位于最高点.(4)(4)当当xxx时时,曲线下降曲线下降.并且当曲线向左、右两边无限延伸时,

    13、以并且当曲线向左、右两边无限延伸时,以x x轴为渐近线,向它无限靠近。轴为渐近线,向它无限靠近。0.512一定O正态曲线的性质正态曲线的性质(5)(5)当当一定时,一定时,曲线的形状由曲线的形状由确定。确定。越越大,曲线越大,曲线越“扁平扁平”,表示总体的分布越分,表示总体的分布越分散;散;越小,曲线越越小,曲线越“尖陡尖陡”,表示总体的,表示总体的分布越集中分布越集中0.512一定一定O正态曲线的性质正态曲线的性质(Xa,PaX)a,bbxbmsp若若 是是一一个个随随机机变变量量,对对任任给给区区间间,(恰恰好好是是正正态态密密度度曲曲线线下下方方和和 轴轴上上方方所所围围成成的的图图形形

    14、的的面面积积,我我们们就就称称服服从从参参数数 和和 的的正正态态分分布布。()ms:简简记记为为:,abXY知识点:正态分布知识点:正态分布当当0 0,1 1时,正态分布称为标准正态时,正态分布称为标准正态分布,其相应的函数表达式是分布,其相应的函数表达式是 其相应的曲线称为标准正态曲线。标准正态其相应的曲线称为标准正态曲线。标准正态分布分布N N(0 0,1 1)在正态分布的研究中占有重)在正态分布的研究中占有重要地位。任何正态分布的问题均可转化成标要地位。任何正态分布的问题均可转化成标准正态分布的概率问题准正态分布的概率问题。221(),R2xf xex知识点:标准正态曲线知识点:标准正态曲线标准正态总体标准正态总体N(0,1)N(0,1)的概率问题的概率问题:就是图中阴影就是图中阴影区域区域A A的面积的面积 由于标准正态总体由于标准正态总体 在正态总体的研究在正态总体的研究中有非常重要的地位,已专门制作了中有非常重要的地位,已专门制作了“标准正态标准正态分布表分布表”见见p110。1,0N00 xPx表表中中相相对对于于的的值值是是指指(X X)的的大大小小。A A该区域的面积表示?该区域的面积表示?又该如何计算呢又该如何计算呢

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第二章-概率-复习与小结(苏教版选修2-3)课件.ppt
    链接地址:https://www.163wenku.com/p-5695903.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库