书签 分享 收藏 举报 版权申诉 / 72
上传文档赚钱

类型第九章-复习课课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:5695885
  • 上传时间:2023-05-03
  • 格式:PPT
  • 页数:72
  • 大小:815.02KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第九章-复习课课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第九 复习 课件
    资源描述:

    1、球的问题直线与平面所成角直线与平面所成角直线与平面所成角直线与平面所成角平面与平面所成角平面与平面所成角平面与平面所成角平面与平面所成角异面直线所成的角异面直线所成的角异面直线所成的角异面直线所成的角异面直线所成的角异面直线所成的角异面直线所成的角异面直线所成的角斜线与平面所成的角斜线与平面所成的角平面的一条斜线平面的一条斜线和它在这个平面内的射影和它在这个平面内的射影 所成的所成的锐角锐角AOB当直线与平面垂直时,直当直线与平面垂直时,直线与平面所成的角是线与平面所成的角是90当直线在平面内或当直线在平面内或与平面平行时,与平面平行时,直线与平面所成的角直线与平面所成的角是是0斜线与平面所成

    2、的角斜线与平面所成的角(0,90)直线与平面所成的角直线与平面所成的角 0,90异面直线所成的角异面直线所成的角(0,90最小角原理最小角原理AOBC斜线与平面所成的角,是这条斜线和这个平斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中面内的直线所成的一切角中最小的角最小的角。AOBC如图如图,直线直线OA与平面与平面所成的角为所成的角为,平面内一条直线平面内一条直线OC与与OA的射影的射影OB所成的角为所成的角为,设设AOC为为 2求证求证:cos 2=cos 1 cos 求直线与平面所成的角时求直线与平面所成的角时,应注意的问题应注意的问题:(1)先判断直线与平面的位置关系先

    3、判断直线与平面的位置关系(2)当直线与平面斜交时,常采用以下步骤:当直线与平面斜交时,常采用以下步骤:作出或找出斜线上的点到平面的垂线作出或找出斜线上的点到平面的垂线作出或找出斜线在平面上的射影作出或找出斜线在平面上的射影求出斜线段,射影,垂线段的长度求出斜线段,射影,垂线段的长度解此直角三角形,求出所成角的相应函数值解此直角三角形,求出所成角的相应函数值从一条直线出发的两个半平面所形成从一条直线出发的两个半平面所形成的图形叫做二面角的图形叫做二面角这条直线叫做二面角的棱这条直线叫做二面角的棱从一条直线出发的两个半平面所形成从一条直线出发的两个半平面所形成的图形叫做二面角的图形叫做二面角这条直

    4、线叫做二面角的棱这条直线叫做二面角的棱二面角的平面角二面角的平面角二面角的平面角二面角的平面角以二面角的棱上任意一点为端点,以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角这两条射线所成的角叫做二面角的平面角O二面角的求法(1)(1)垂线法垂线法利用三垂线定理作出平利用三垂线定理作出平面角,通过解直角三角形求角的大小面角,通过解直角三角形求角的大小(2)(2)垂面法垂面法通过做二面角的棱的垂通过做二面角的棱的垂面,两条交线所成的角即为平面角面,两条交线所成的角即为平面角(3)(3)射影法射影法若多边形的面

    5、积是若多边形的面积是S S,它在一个平面上的射影图形面积是它在一个平面上的射影图形面积是SS,则二面角则二面角 的大小为的大小为COS =SS S S垂线法垂线法垂面法垂面法ABCDO射影法射影法ABCAM已知:如图已知:如图ABC的顶点的顶点A在平面在平面M上的射上的射影为点影为点A,ABC的面积是的面积是S,ABC的的面积是面积是S,设二面角设二面角A-BC-A为为 求证:求证:COS =S SD直线和平面的位置关系直线和平面的位置关系直线和平面的平行关系直线和平面的平行关系平面和平面的平行关系平面和平面的平行关系直线在平面内直线在平面内直线和平面相交直线和平面相交直线和平面平行直线和平面

    6、平行线面位置关系线面位置关系有无数个公共点有无数个公共点有且仅有一个公有且仅有一个公共点共点没有公共点没有公共点 位置关系位置关系 图图 示示表示方法表示方法公共点个数公共点个数直线在平直线在平面内面内a无数个无数个直直线线在在平平面面外外直直线线与与平平面面相相交交斜斜交交a一个一个垂直垂直相交相交a 一个一个直线与平直线与平面平行面平行a 无无aaAAaa(1)定义定义直线与平面没有公共点直线与平面没有公共点(2)定理定理如果平面外一条直线和如果平面外一条直线和这个平面内的一条直线平行,那么这个平面内的一条直线平行,那么这条直线和这个平面平行。这条直线和这个平面平行。线面平行判定定理线面平

    7、行判定定理如果平面外如果平面外一条直线和这个平面内的一条直线平行,一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。那么这条直线和这个平面平行。已知:已知:a b a/b 求证:求证:a/abP(1)a,b确定平面确定平面,=b(2)假设假设a与与 不平行不平行则则a与与 有公共点有公共点P则则P =b(3)这与已知这与已知a/b矛盾矛盾(4)a /线面平行的性质线面平行的性质线面平行的性质线面平行的性质(1)如果一条直线与一个平面平行,如果一条直线与一个平面平行,则这条直线与这个平面则这条直线与这个平面无公共点无公共点(2)如果一条直线与一个平面平行,如果一条直线与一个平面平行

    8、,则这条直线与这个平面内的直线则这条直线与这个平面内的直线成异面直线或平行直线成异面直线或平行直线(3)如果一条直线与一个平面平行,如果一条直线与一个平面平行,经过这条直线的平面和这个平面相经过这条直线的平面和这个平面相交,则这条交,则这条直线与交线平行直线与交线平行。如果平面外的两条平行线中的一如果平面外的两条平行线中的一条与这个平面平行,则另一条直条与这个平面平行,则另一条直线与这个平面也平行线与这个平面也平行abc如果一条直线和两个相交平面都平如果一条直线和两个相交平面都平行,则这条直线与它们的交线平行行,则这条直线与它们的交线平行abc l已知:已知:a/,a/,=l求证:求证:a/l

    9、知识点回顾知识点回顾:一、两个平面平行的判定方法一、两个平面平行的判定方法二、两个平面平行的性质二、两个平面平行的性质一、两个平面平行的判定方法一、两个平面平行的判定方法1、两个平面没有公共点、两个平面没有公共点2、一个平面内有两条相交、一个平面内有两条相交 直线都平行于另一个平面直线都平行于另一个平面3、都垂直于同一条直线的、都垂直于同一条直线的两个两个平面平面 两个平面平行两个平面平行二、两个平面平行的性质二、两个平面平行的性质4、一直线垂直于两个平行平面中的一、一直线垂直于两个平行平面中的一个,则它也垂直于另一个平面个,则它也垂直于另一个平面2、其中一个平面内的直线平行于、其中一个平面内

    10、的直线平行于另一个平面另一个平面3、两个平行平面同时和第三个平面、两个平行平面同时和第三个平面相交,它们的交线平行相交,它们的交线平行两个平面平行两个平面平行5、夹在两个平行平面间的平行线段、夹在两个平行平面间的平行线段相等相等1、两个平面没有公共点、两个平面没有公共点判断下列命题是否正确?判断下列命题是否正确?1、平行于同一直线的两平面平行、平行于同一直线的两平面平行2、垂直于同一直线的两平面平行、垂直于同一直线的两平面平行3、与同一直线成等角的两平面平行、与同一直线成等角的两平面平行小结小结:线线平行平行 线线 线线平行平行 面面 面面平行平行 面面线面平行判定线面平行判定线面平行性质线面

    11、平行性质面面平行判定面面平行判定面面平行性质面面平行性质三种平行关系的转化三种平行关系的转化线面垂直的判定方法线面垂直的判定方法(1)定义)定义如果一条直线和一个平面内的如果一条直线和一个平面内的任任意一条意一条直线都垂直,则直线与平面垂直。直线都垂直,则直线与平面垂直。(2)判定定理)判定定理1如果两条如果两条平行线平行线中的一中的一条垂直于一个平面,则另一条也垂直于这个条垂直于一个平面,则另一条也垂直于这个平面。平面。(3)判定定理)判定定理2如果一条直线和一个平如果一条直线和一个平面内的面内的两条相交直线两条相交直线都垂直,则直线与平面都垂直,则直线与平面垂直。垂直。线面垂直的性质线面垂

    12、直的性质(1)定义)定义如果一条直线和一个平面垂直如果一条直线和一个平面垂直则这条直线垂直于平面内的则这条直线垂直于平面内的任意一条任意一条直线直线(2)性质定理)性质定理如果两条直线同垂直于一如果两条直线同垂直于一个平面,则这两条直线个平面,则这两条直线平行平行。填空填空(1)l ,m l_m(2)n,m,m与与n_,l m,l n,l (3)l ,m ,l_m(4)l/m,l ,m_ 相交相交/如果两个平面所成的二面角是如果两个平面所成的二面角是直二面角,则这两个平面垂直直二面角,则这两个平面垂直如果两个平面所成的二面角是如果两个平面所成的二面角是直二面角,则这两个平面垂直直二面角,则这两

    13、个平面垂直如果一个平面经过另一个平面的一如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直条垂线,则这两个平面互相垂直ABEDC线面垂直线面垂直线面垂直线面垂直面面垂直面面垂直面面垂直面面垂直如果一个平面经过另一个平面的一如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直条垂线,则这两个平面互相垂直如果一个平面经过另一个平面的一如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直条垂线,则这两个平面互相垂直PABCPA面面ABC面面PAC面面ABC面面PAB面面ABCBC面面PAC面面PBC面面PAC面面ABC面面PAC如果两个平面垂直,则在一个平面内垂直如果两个平面垂直

    14、,则在一个平面内垂直于它们的交线的直线垂直于另一个平面于它们的交线的直线垂直于另一个平面如果两个平面垂直,则在一个平面内垂直如果两个平面垂直,则在一个平面内垂直于它们的交线的直线垂直于另一个平面于它们的交线的直线垂直于另一个平面ABDCE线面垂直线面垂直线面垂直线面垂直面面垂直面面垂直面面垂直面面垂直点点点点点点线线点点面面线线线线线线面面点点面面AH从平面外一点引这个平面的垂线从平面外一点引这个平面的垂线垂足叫做垂足叫做点点在这个平面内在这个平面内的射影的射影这个点和垂足间的距离叫做这个点和垂足间的距离叫做点到平面的距离点到平面的距离线面垂直线面垂直点的射影点的射影点面距离点面距离已知三棱锥

    15、已知三棱锥P-ABC的三条侧棱的三条侧棱PA=PB=PC试判断点试判断点P在底面在底面ABC的射影的位置的射影的位置?PABCOOA=OB=OCO为三角形为三角形ABC的的外心外心已知三棱锥已知三棱锥P-ABC的三条的三条侧棱侧棱PA,PB,PC两两垂直两两垂直,试判断点试判断点P在底面在底面ABC的射影的射影的位置?的位置?PABCO为三角形为三角形ABC的的垂心垂心DO已知三棱锥已知三棱锥P-ABC的的顶点顶点P到底面三角形到底面三角形ABC的三条边的距离相等的三条边的距离相等,试判断点试判断点P在在底面底面ABC的射影的位置?的射影的位置?PABCO为三角形为三角形ABC的的内心内心OE

    16、F已知三棱锥已知三棱锥P-ABC的三条侧棱的三条侧棱PA=PB=PC试判断点试判断点P在底面在底面ABC的射影的位置?的射影的位置?外心外心已知三棱锥已知三棱锥P-ABC的三条的三条侧棱侧棱PA,PB,PC两两垂两两垂直直,试判断点试判断点P在底面在底面ABC的射影的位置?的射影的位置?垂心垂心已知三棱锥已知三棱锥P-ABC的的顶点顶点P到底面三角形到底面三角形ABC的三条边的距离的三条边的距离相等相等,试判断点试判断点P在底在底面面ABC的射影的位置?的射影的位置?内心内心PABCO线线面面 lAA一条直线和一个平面平行时,直线上任意一点一条直线和一个平面平行时,直线上任意一点到这个平面的距

    17、离叫做到这个平面的距离叫做直线到平面的距离直线到平面的距离 lAA lAAB点点面面线线面面s常用体积公式常用体积公式常用体积公式常用体积公式hV棱柱棱柱=hs底底V棱锥棱锥=hs底底31求多面体的体积时常用的方法求多面体的体积时常用的方法1、直接法、直接法2、割补法、割补法3、变换法、变换法根据条件直接用根据条件直接用柱体柱体或或锥体锥体的体积公式的体积公式如果一个多面体的体积直接用体积公式如果一个多面体的体积直接用体积公式计算用困难,可将其计算用困难,可将其分割成易求体积的分割成易求体积的几何体几何体,逐块求积,然后求和。,逐块求积,然后求和。如果一个如果一个三棱锥三棱锥的体积直接用体积公

    18、式的体积直接用体积公式计算用困难,可转换为等积的另一三棱计算用困难,可转换为等积的另一三棱锥,而这一三棱锥的底面面积和高都是锥,而这一三棱锥的底面面积和高都是容易求得容易求得PCBDA棱锥基本概念棱锥基本概念棱锥的棱锥的底面底面棱锥的棱锥的侧面侧面棱锥的棱锥的侧棱侧棱棱锥的棱锥的顶点顶点棱锥的棱锥的高高H正棱锥的正棱锥的斜高斜高HPCBDAO棱锥基本性质棱锥基本性质如果棱锥被平行于底如果棱锥被平行于底面的平面所截,那么面的平面所截,那么截面和底面截面和底面相似相似,并,并且它们面积的比等于且它们面积的比等于截得的棱锥的高与已截得的棱锥的高与已知棱锥的高的知棱锥的高的平方比平方比CBDA A B

    19、 C DAB C DSS22PHPO 正棱锥的基本性质正棱锥的基本性质棱锥的高、斜高和斜棱锥的高、斜高和斜高在底面的射影组成高在底面的射影组成一个直角三角形。棱一个直角三角形。棱锥的高、侧棱和侧棱锥的高、侧棱和侧棱在底面的射影组成一在底面的射影组成一个直角三角形个直角三角形PCBDAHERt PEHRt PHBRt PEBRt BEH正棱锥正棱锥如果一个棱锥如果一个棱锥 的底面是正多的底面是正多边形,并且顶边形,并且顶点在底面的射点在底面的射影是底面中心影是底面中心这样的棱锥叫这样的棱锥叫做正棱锥做正棱锥棱锥基本性质棱锥基本性质如果棱锥被平行于底面的平面所截,那如果棱锥被平行于底面的平面所截,

    20、那么截面和底面相似,并且它们面积的比么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的等于截得的棱锥的高与已知棱锥的高的平方比平方比棱锥的高、斜高和斜高在底面的射影组棱锥的高、斜高和斜高在底面的射影组成一个直角三角形。棱锥的高、侧棱和成一个直角三角形。棱锥的高、侧棱和侧棱在底面的射影组成一个直角三角形侧棱在底面的射影组成一个直角三角形球面可看作与定点球面可看作与定点(球心球心)的距离等于定长的距离等于定长(半径半径)的所有点的集合的所有点的集合球的大圆球的大圆球面被经过球心的平面截球面被经过球心的平面截得的圆叫做球的大圆得的圆叫做球的大圆经度经度纬度纬度球的性质球的性质OO球心与截面圆球心与截面圆的圆心的连线的圆心的连线垂直于截面圆垂直于截面圆22hRr 22hRr 球的公式球的公式334RV 24RS 球的体积球的体积球的表面积球的表面积例题选讲例题选讲球内有相距球内有相距1cm的两个平行截的两个平行截面的面积分别是面的面积分别是5 cm2,8 cm2,球心不在截面之间,求球的体积球心不在截面之间,求球的体积OO2O1AB球的表面积是球的表面积是2500 ,球内有两个球内有两个平行截面的面积分别是平行截面的面积分别是49、400,求两截面距离求两截面距离OO2O1ABOO2O1AB

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第九章-复习课课件.ppt
    链接地址:https://www.163wenku.com/p-5695885.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库