空间中的垂直复习课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《空间中的垂直复习课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 中的 垂直 复习 课件
- 资源描述:
-
1、期中复习空间中的垂直关系空间中的垂直关系教学目标教学目标:以立体几何的定义、公理和定理为出发点,以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判认识和理解空间中线面垂直的有关性质与判定定理定定理.1.直线与平面垂直直线与平面垂直2.直线和平面所成的角直线和平面所成的角 3.二面角的有关概念二面角的有关概念4.平面与平面垂直平面与平面垂直思考探究思考探究垂直于同一平面的两平面是否平行?垂直于同一平面的两平面是否平行?提示:提示:垂直于同一平面的两平面可能平行,也可能相交垂直于同一平面的两平面可能平行,也可能相交.1.直线直线a直线直线b,a平面平面,则,则b与与的位置
2、关系是的位置关系是 _ 解析:解析:由垂直和平行的有关性质可知由垂直和平行的有关性质可知b 或或b .答案:答案:b或或b 2.已知直线已知直线l平面平面,直线,直线m平面平面,有下列命题:,有下列命题:lm;lm;lm;lm.其中正确的命题是其中正确的命题是_解析:解析:对,对,l,l ,又又m ,lm,正确;正确;对,对,l,则,则l或或l ,l不一定与不一定与m平行,平行,错误;错误;对,对,lm,l,m,又又m ,正确;错误正确;错误.答案:答案:3.在在ABC中,中,ACB90,AB8,ABC60,PC平面平面ABC,PC4,M是是AB上一个动点,则上一个动点,则PM的最小值为的最小
3、值为.解析:解析:PC平面平面ABC,CM平面平面ABC,PCCM,PM 要使要使PM最小,只需最小,只需CM最小,此时最小,此时CMAB,CM 2 ,PM的最小值为的最小值为2 .答案:答案:24.如图,平面如图,平面ABC平面平面BDC,BACBDC90,且,且 ABACa,则,则AD.解析:解析:取取BC中点中点E,连结,连结ED、AE,ABAC,AEBC.平面平面ABC平面平面BDC,AE平面平面BCD.AEED.在在RtABC和和RtBCD中,中,AEED BC a,AD a.答案:答案:a1.证明直线和平面垂直的常用方法:证明直线和平面垂直的常用方法:(1)利用判定定理利用判定定理
4、.(2)利用平行线垂直于平面的传递性利用平行线垂直于平面的传递性(ab,ab).(3)利用面面平行的性质利用面面平行的性质(a,a).(4)利用面面垂直的性质利用面面垂直的性质.当直线和平面垂直时,该直线垂直于平面内的任一直线,当直线和平面垂直时,该直线垂直于平面内的任一直线,常用来证明线线垂直常用来证明线线垂直.2.直线和平面垂直的性质定理直线和平面垂直的性质定理:可以作为两条直线平行的可以作为两条直线平行的 判定定理,可以并入平行推导链中,实现平行与垂直判定定理,可以并入平行推导链中,实现平行与垂直 的相互转化,即线线垂直的相互转化,即线线垂直线面垂直线面垂直线线平行线线平行线线 面平行面
5、平行.(2009福建高考改编福建高考改编)如图,如图,平行四边形平行四边形ABCD中,中,DAB60,AB2,AD4.将将CBD沿沿BD折起折起到到EBD的位置,使平面的位置,使平面EBD平平面面ABD.求证:求证:ABDE.思路点拨思路点拨课堂笔记课堂笔记证明:在证明:在ABD中,中,AB2,AD4,DAB60,BD 2 .AB2BD2AD2,ABBD.又又平面平面EBD平面平面ABD,平面平面EBD平面平面ABDBD,AB平面平面ABD,AB平面平面EBD.DE平面平面EBD,ABDE.本例中,本例中,ED与平面与平面ABD垂直吗?垂直吗?解:解:由例由例1知,知,ABBD,CDAB,CD
6、BD,从而,从而DEBD.又又平面平面EBD平面平面ABD,ED平面平面EBD,ED平面平面ABD.1.证明平面与平面垂直的方法主要有:证明平面与平面垂直的方法主要有:(1)利用定义证明利用定义证明.只需判定两平面所成的二面角为直二面角只需判定两平面所成的二面角为直二面角 即可即可.(2)利用判定定理利用判定定理.在审题时,要注意直观判断哪条直线可能在审题时,要注意直观判断哪条直线可能 是垂线,充分利用等腰三角形底边的中线垂直于底边,是垂线,充分利用等腰三角形底边的中线垂直于底边,勾股定理等结论勾股定理等结论.2.关于三种垂直关系的转化可结关于三种垂直关系的转化可结合下图记忆合下图记忆.(20
展开阅读全文