人教版八年级数学上册第十四章整式的乘法与因式分解复习(知识点、典型例题)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版八年级数学上册第十四章整式的乘法与因式分解复习(知识点、典型例题)课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 上册 第十四 整式 乘法 因式分解 复习 知识点 典型 例题 课件 下载 _八年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、整式的乘法整式的乘法同底数幂的乘法同底数幂的乘法幂的乘方幂的乘方积的乘方积的乘方单项式的乘法单项式的乘法aman=am+namn()=amnabn()=anb na2x54x2a3b(-3 )=4 (-3)a3a2()x2x5()b=-12a5bx7整式的乘法整式的乘法同底数幂的乘法同底数幂的乘法幂的乘方幂的乘方积的乘方积的乘方单项式的乘法单项式的乘法单项式与多项式相乘单项式与多项式相乘多项式的乘法多项式的乘法aman=am+nam()n=amnabn()=anb na2x54x2a3b(-3 )m(a+b)=(a+b)(m+n)=ma+mbam+an+bm+bn底数不变底数不变指数相乘指数相
2、乘指数相加指数相加mnnmaa)(nmnmaaa同底数幂相乘同底数幂相乘幂的乘方幂的乘方其中其中m ,n都是都是正整数正整数想想一一想想a2a3a5+=(1)a2a a2=(2)(x-y)2(y-x)5=(x-y)7(8)x2()3=x5(4)a3x635-(x-y)7(y-x)747(6)(-5)(-5)=511-511(-3)233=(-3)5(7)2(5)35a2a=10a610a5(3)a3a3=2a3a6找一找找一找47-x2y z2()74-x y2()=x3y3105103-1021010()()-2 3()=-621-61-a2b3a8b27()3=a3n23n()b2()ab
3、()=(A)(D)(B)(C)D6n口答练习口答练习x3x2=()a62+a43()=xx2()3=x3x2002=71()1997719982=()(-ab)-c2b3a3(1)(3)(7)-abc()(-ab)2=(6)(5)(4)(2)x52a12x7x19997-a3b3c2+abc比一比比一比算算计计(1)3x2()3-7x3 x3-x4x2+1()a2()-2b2a+2b()-2ab(a-b)(2)先化简,再求值先化简,再求值:其中其中a=1,b=21.公 式 的 反 向 使 用nmnmaaamnnmmnaaabababa323210102101710410)()(,求下列各式的值
4、,已知公 式 的 反 向 使 用-单项式 的 除法 法则 如何进行单项式除以单项式的运算如何进行单项式除以单项式的运算?除式的系数除式的系数被除式的系数被除式的系数解:(1).(2xy)(7xy)(14x4y)=-56x7y5(14x4y)=-4x3y2解:(2).(2a+b)4(2a+b)=(2a+b)=4a2+4ab+b2=8x6y3(7xy)(14x4y)=(2a+b)4-2(1)(-a)(1)(-a)8 8(-a(-a2 2)(2)-5a(2)-5a5 5b b3 3c c5a5a4 4b b3 3(4)-3a(4)-3a2 2x x4 4y y3 3(-axy(-axy2 2)(5)
5、(4(5)(410109 9)(-2(-210103 3)=-a=-a6 6=-ac=-ac=3ax=3ax3 3y y=-2=-210106 6(3)6m(3)6m2 2n n(-2mn)(-2mn)=-3m=-3m多项式除以单项式的法则abcmmm例 题 解 析aaaa3)61527(1 23)()21()213(2 22xyxyxyyx)(例题例题)21(32xyyx)21(21xyxy x6.1 21()2xyxy2 y(1)(-2a(1)(-2a4 4b b3 3c)c)3 3(-8a(-8a4 4b b5 5c)c)(3(3 )(-3.6(-3.610101010)(-2(-210
6、102 2)2 2(3(310102 2)2 2=a=a8 8b b4 4c c2 2=1010(2)(6x(2)(6x2 2y y3 3)2 2(3xy(3xy2 2)2 2=4x=4x2 2y y2 22234)21()212)(4(xxxx乘法公式乘法公式平方差公式平方差公式完全平方公式完全平方公式(两数和的平方)两数和的平方)(a+b)(a-b)=a2b2-(a+b)2=a2b22ab+二次三项型乘法公式二次三项型乘法公式(x+a)(x+b)=x+(a+b)x+ab2 计算:计算:(1)(2x3)()(2x3)(2)(x2)()(x2)(3)(2xy)()(2xy)(4)(yx)()(
7、xy)(5)1998 例例1 计算计算 1998200219982002 =(2000-2)()(2000+2)2222000=4000000-4=3999996解解22)2)(2()2)(1(nmnm:计算想一想想一想下列计算是否正确?如不正确,应下列计算是否正确?如不正确,应如何改正?如何改正?(-x+6)(-x-6)=-x2-6(1)2-x-1(-x-1)(x+1)=(2)=(-x)2-62=x2-36-(x+1)=(x+1)=-(x+1)2=+1()x22x-=-x2-2x-1(3)(-2xy-1)(2xy-1)=1-2xy2=(-1)2-(2xy)22=1-4xy2222222222
8、)(_)(4(_)()3(25_4_)2)(2(_6_)(1(yxyxbabaxxaaa:填空39520 x2ab4xy已知已知(a+b)2=11,(a-b)2=7,则则ab=()(1)(A)1(B)-1(C)0(D)1或或-1(C)(D)(2)如果如果4x+12xy+k是一个关于是一个关于x、y的完全的完全2平方式平方式,则则k=()(A)(B)3y29y2y36y 2是一个关于是一个关于x、y的完全平的完全平如果如果4x2+kxy+9y2方式,则方式,则k=()AB+12(3)如果如果a+a1=3,则则a2+a21=()(A)7(B)9(C)10(D)11所以所以=9a+a1()2所以所以
9、a+a1=922+2A故故a a1=72+2因为因为a+a1=3解:解:(a-2b+3)(a+2b-3)的结果是的结果是()(A)22a+4b+12b-9(C)22a+4b-12b-9(B)a2-4b2-12b-9(D)a2-4b2+12b-9D(4)计算计算=a-(2b-3)a+(2b-3)=a2-(2b-3)2=a2-(4b-12b+9)2 =a2-4b2+12b-9(a-2b+3)(a+2b-3)解:解:因式分解1.运用前两节所学的知识填空运用前两节所学的知识填空1).m(a+b+c)=.2).(a+b)(a-b)=.3).(a+b)2=.2.试一试试一试 填空填空:1).ma+mb+m
10、c=m()2).a2-b2=()()3).a2+2ab+b2=()2ma+mb+mca2-b2a2+2ab+b2你能发现这两组你能发现这两组等式之间的联系等式之间的联系和区别吗和区别吗?a+b+c(a+b)(a-b)a+b 一般地,把一个多项式转化成几个整式的一般地,把一个多项式转化成几个整式的的形式,叫的形式,叫做做,有时我们也把这一过程叫做,有时我们也把这一过程叫做。定义定义理解概念判断哪些是因式分解判断哪些是因式分解?(1)x2-4y2=(x+2y)(x-2y)(2)2x(x-3y)=2x2-6xy (3)(5a-1)2=25a2-10a+1 (4)x2+4x+4=(x+2)2 (5)(
11、a-3)(a+3)=a2-9 )43(43)6(2aaaaa因式分解因式分解整式乘法整式乘法整式乘法整式乘法因式分解因式分解整式乘法整式乘法两者都不是两者都不是像像(1)(1)这种因式分解的方法叫这种因式分解的方法叫提公因式法提公因式法像像(2),(3)(2),(3)利用乘法公式对多项式进行因式分解的这利用乘法公式对多项式进行因式分解的这种因式分解的方法就称为种因式分解的方法就称为公式法公式法.1)ma+mb+mc=m(a+b+c )2)a2-b2=(a+b)(a-b)3)a2+2ab+b2=(a+b)2注意事项注意事项 1)首选提公因式法首选提公因式法,其次考虑公式法其次考虑公式法 2)两项
展开阅读全文