书签 分享 收藏 举报 版权申诉 / 32
上传文档赚钱

类型人教版八年级数学上册第12章全等三角形复习课课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:5693410
  • 上传时间:2023-05-03
  • 格式:PPT
  • 页数:32
  • 大小:3.03MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教版八年级数学上册第12章全等三角形复习课课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 八年 级数 上册 12 全等 三角形 复习 课件 下载 _八年级上册_人教版(2024)_数学_初中
    资源描述:

    1、1 1什么是全等三角形?什么是全等三角形?能够完全重合的两个三角形叫做全等三角形。能够完全重合的两个三角形叫做全等三角形。A AE EC CB BD DA AB BD DE EC CD DB BC CA AA AD DF FB BC CE E2 2、一个三角形经过哪些变化可以得到它的全等形?、一个三角形经过哪些变化可以得到它的全等形?一个三角形经过平移、翻折、旋转可以一个三角形经过平移、翻折、旋转可以得到它的全等形。得到它的全等形。3 3全等三角形有哪些性质?全等三角形有哪些性质?(1)全等三角形的对应边相等、对应角相等。全等三角形的对应边相等、对应角相等。(2)全等三角形的周长相等、面积相等

    2、全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的对应中线、全等三角形的对应边上的对应中线、角平分线、高线分别相等。角平分线、高线分别相等。三边对应相等的两个三角形全等三边对应相等的两个三角形全等 (可以简写为(可以简写为“边边边边边边”或或“SSS”)。)。ABCDEF在在ABC和和 DEF中中 ABC DEF(SSS)AB=DEBC=EFCA=FD 4 4、全等三角形的判定方法、全等三角形的判定方法在在ABC与与DEF中中ABC DEF(SAS)两边和它们的夹角对应相等的两个三角形全等。两边和它们的夹角对应相等的两个三角形全等。(可以简写成可以简写成“边角边边角边”或或FEDCB

    3、AAC=DFC=FBC=EFA=DAB=DEB=E在在ABC和和DEF中中 ABC DEF(ASA)FEDCBA在在ABC和和DEF中中A=DB=E BC=EF ABC DEF(AAS)在在RtABC和和RtDEF中中AB=DE(已知(已知)AC=DF(已知(已知)ABC DEF(HL)ABCDEF哪些方法能够判定两个三角形全等?哪些方法能够判定两个三角形全等?RtRt全等的判定方法全等的判定方法一般三角形全等的判定方法一般三角形全等的判定方法注意:注意:边边角边边角和和角角角角角角不能判定两个三角形全等。不能判定两个三角形全等。结论:结论:判定两个三角形全等至少要有判定两个三角形全等至少要有

    4、一条边一条边。1、判断下面各组的两个三角形是否全等:判断下面各组的两个三角形是否全等:AC B150 23 DF E15023(1)(SAS)ABCDEF(2)已知:已知:AB=CD A=D (3)已知:)已知:AC=AD,BC=BD A C B D(AAS)(SSS)AOBDOC ABCABD A BOC DABCDO.在下列推理中填写需要的条件,使结论成立。在下列推理中填写需要的条件,使结论成立。(1)在)在AOB和和 DOC中中 AO=DO(已知)(已知)_ =_()_=_()AOB DOC(SAS)AOBDOC对顶角相等对顶角相等BOCO已知已知(2)在)在ABD和和 DCA中中 _=

    5、_(已知)(已知)_=_(已知)(已知)_=_(公共边公共边)ABD DCA(SSS)BDCAADDADCABABCDO.在下列推理中填写需要的条件,使结论成立。在下列推理中填写需要的条件,使结论成立。(3)在)在ABC和和 DCB中中 _=_(已知)(已知)BC=CB(公共边公共边)_=_(已知)(已知)ABC DCB(ASA)ACBDBCDCBABCABCDO.在下列推理中填写需要的条件,使结论成立。在下列推理中填写需要的条件,使结论成立。(4)在)在AOB和和 DOC中中 _=_(对顶角相等)(对顶角相等)_=_(已知)(已知)AO=DO(已知已知)AOB DOC(AAS)BAOCDOD

    6、OCAOBABCDO 1.不可推得不可推得ABC和和DEF全等的条件是(全等的条件是()A.AB=DE,A=D,B=E B.AB=DF,AC=DE,BC=EF C.AB=DE,AC=DF,B=E D.AC=DF,BC=EF,C=FCABCFD E2.2.下列说法中正确的是(下列说法中正确的是()A.A.有一个角对应相等且周长相等的两个三角形全等;有一个角对应相等且周长相等的两个三角形全等;B.B.两个等边三角形全等:两个等边三角形全等:C.C.有一个锐角和斜边对应相等的两个直角三角形全等;有一个锐角和斜边对应相等的两个直角三角形全等;D.D.有一个锐角和一直角边相等的两个直角三角形全等。有一个

    7、锐角和一直角边相等的两个直角三角形全等。CC选项选项:D选项选项:全等全等不一定全等不一定全等3、如图,已知、如图,已知AB=CD,AD=BC,则图中有(,则图中有()对)对三角形全等。三角形全等。A、2 B、3 C、4 D、5ABD CDB AOB CODADCCBA AOD COBcA A D D C CB BO O.如图如图,1,12,32,34,4,则图中有(则图中有()对三)对三角形全等。角形全等。A.3 B.4 C.5 D.6A.3 B.4 C.5 D.6D DA AB BC CD DE EF F1 12 23 34 4例例1、已知:、已知:ADBCADBC,D D为垂足,为垂足,

    8、AD=BDAD=BD,DCDCDEDE,那么,那么,C=BEDC=BED。为什。为什么?么?ABCDE分析:要分析:要C CBEDBED,只需证,只需证ADCBDEADCBDE结合已知考虑结合已知考虑“SAS”证之证之证明:证明:ADBCADBC于于D D,ADCADCBDEBDE9090在在ADCADC和和BDE BDE 中中ADADBDBDADCADCBDEBDEDCDCDEDEADCBDEADCBDECCBEDBED全等三角形的进一步应用全等三角形的进一步应用例例2.2.如图如图,ACCB,BDBC,AB=DC,ACCB,BDBC,AB=DC,判断判断ABAB与与CDCD是否平是否平行行

    9、?为什么为什么?答答:ABCD.:ABCD.ACCB,BDBC(ACCB,BDBC(已知已知)ACBACB与与DBCDBC是直角三角形是直角三角形AB=DC(AB=DC(已知已知)BC=CB(BC=CB(公共边公共边)ACBACBDBC(HL)DBC(HL)1=2(1=2(全等三角形对应角相等全等三角形对应角相等)ABCD(ABCD(内错角相等内错角相等,两直线平行两直线平行)()12D DC CB BA A要观察待证的线段或角,在哪两个可能全等的三角形中。要观察待证的线段或角,在哪两个可能全等的三角形中。分析分析要证两个三角形全等,已有什么条件,要证两个三角形全等,已有什么条件,还缺什么条件

    10、。还缺什么条件。有有公共边公共边的,的,公共边公共边一般是对应边,一般是对应边,有有公共角公共角的,的,公共角公共角一般是对应角,有一般是对应角,有对顶角对顶角,对顶角对顶角一般是对应角一般是对应角注意:有些题可能要证明多次全等或者进行注意:有些题可能要证明多次全等或者进行 一些必要的等价转化。一些必要的等价转化。归纳:归纳:全等三角形,是证明两条全等三角形,是证明两条线段线段或两个或两个角角相等的相等的重要方法之一,证明时重要方法之一,证明时.若若ADADAEAE,BEBECD,1CD,12,12,1110110,BAE BAE6060,那么那么CAECAE .2020B BD DC CE

    11、EA A1 12 2提示:等腰三角形的两个底角相等提示:等腰三角形的两个底角相等.在在ABCABC中中,ADBC,ADBC于于D,BEACD,BEAC于于E,ADE,AD与与BEBE相交于相交于F,F,若若BFBFAC,AC,那么那么ABCABC .B BD DC CE EA AF F45451.如图,如图,D在在AB上,上,E在在AC上,且上,且B=C,那么补充下列一具条件后,仍无法,那么补充下列一具条件后,仍无法判定判定ABE ACD的是的是()AAD=AE B AEB=ADC CBE=CD DAB=ACBABDEC2.已知:如图,已知:如图,CDAB,BEAC,垂足分别为,垂足分别为D、

    12、E,BE、CD相交于相交于O点,点,1=2,图中全等的三角形共有,图中全等的三角形共有()A.1对对 B.2对对 C.3对对 D.4对对 DABDEC1 2O4.在在ABC和和ADC中,下列三个论断:中,下列三个论断:AB=AD;BAC=DAC;BC=DC。将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题_.ABC和和ADC中,中,若若AB=AD,BC=DC,则则BAC=DAC。ABC和和ADC中,中,若若AB=AD,BAC=DAC,则则BC=DC。ABDC6.如图如图,已知:已知:ABBC于于B,EFAC于于

    13、G,DFBC于于D,BC=DF求证:求证:AC=EFFGEDCBA利用互余关系找出相等的角利用互余关系找出相等的角例例1.如图,点如图,点A、F、E、C在同一直线上,在同一直线上,AFCE,BE=DF,BEDF,求证:,求证:ABCD。ABDECF12 证明:证明:CEAF=QCFAE=DFBEQ又21=DFBE=Q又AEBDCFDDCA=ABCD例例2.2.如图如图ABABCDCD,ADADBCBC,O O为为ACAC中点,过点的直线分别交中点,过点的直线分别交ADAD、BCBC于、,求证:于、,求证:MN证明:在证明:在ABC和和CAD中中AB=CDAC=CABCAD(已知)(已知)(公共边)(公共边)(已知)(已知)ABC CADBCADAC(全等三角形对应角相等)(全等三角形对应角相等)BCADAC(SSS)BC/ADOBACDEF例例4.已知在四边形已知在四边形ABCD中中,AB=CD,BC=AD,E、F 是对角线是对角线AC上的两点,且上的两点,且AE=CF。求证:求证:BE=DF

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版八年级数学上册第12章全等三角形复习课课件.ppt
    链接地址:https://www.163wenku.com/p-5693410.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库