信号与系统课件-下载.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《信号与系统课件-下载.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号 系统 课件 下载
- 资源描述:
-
1、信号的概念、描述和分类信号的概念、描述和分类 信号的基本运算信号的基本运算 典型信号典型信号系统的概念和分类系统的概念和分类二、系统的概念 系统(system)是指若干相互关联的事物组合而成具有特定功能的整体。二、信号的分类1.确定信号和随机信号 确定信号或规则信号:可以用确定时间函数表示的信号 随机信号:若信号不能用确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性 连续时间信号:在连续的时间范围内(-t)有定义的信号称为连续时间信号,简称连续信号。实际中也常称为模拟信号。w 离散时间信号:仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号。实际中也常称为数
2、字信号。2.连续信号和离散信号3.3.周期信号和非周期信号周期信号和非周期信号周期信号:是指一个每隔一定时间T,按相同规律重复变化的信号。(在较长时间内重复变化)连续周期信号f(t)满足f(t)=f(t+mT),离散周期信号f(k)满足f(k)=f(k+mN),满足上述关系的最小T(或整数N)称为该信号的周期。非周期信号:不具有周期性的信号称为非周期信号。两个周期信号两个周期信号x(t)x(t),y(t)y(t)的周期分别为的周期分别为T1T1和和T2T2,若其,若其周期之比周期之比T1/T2T1/T2为有理数,则其和信号为有理数,则其和信号x(t)+y(t)x(t)+y(t)仍仍然是周期信号
3、,其周期为然是周期信号,其周期为T1T1和和T2T2的最小公倍数。的最小公倍数。l结论:结论:l连续正弦信号一定是周期信号,而正弦序列不一连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。定是周期序列。l两连续周期信号之和不一定是周期信号,而两周两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。期序列之和一定是周期序列。4能量信号与功率信号信号可看作是随时间变化的电压或电流,信号 f(t)在欧姆的电阻上的瞬时功率为|f(t)|,在时间区间所消耗的总能量和平均功率分别定义为:w 能量信号:信号总能量为有限值而信号平均功率为零。w 功率信号:平均功率为有限值而信号总能量为无
4、限大。特点:特点:w 信号 f(t)可以是一个既非功率信号,又非能量信号,如单位斜坡信号。但一个信号不可能同时既是功率信号,又是能量信号。w 周期信号都是功率信号;非周期信号可能是能量信号 t,f(t)=0,也可能是功率信号 t,f(t)0。6因果信号 若当 t 0 时 f(t)0的信号,称为因果信号。而若t 0,t 0,f(t)=0的信号称为反因果信号。注意非因果信号指的是在时间零点之前有非零值。2 2、阶跃函数的性质:、阶跃函数的性质:(1 1)可以方便地表示某些信号)可以方便地表示某些信号 eg:f(t)=2u(t)-3u(t-1)+u(t-2)eg:f(t)=2u(t)-3u(t-1)
5、+u(t-2)(2 2)用阶跃函数表示信号的作用区间)用阶跃函数表示信号的作用区间冲激函数与阶跃函数关系冲激函数与阶跃函数关系:dttdut)()(tdtu)()(l加权特性)()()()();()0()()(000tttftttftfttf)0()()(fdtttfl抽样特性)()()(00tfdttttf3 3、性质:、性质:)()(ttl单位冲激函数为偶函数2 2、(t)(t)的尺度变换的尺度变换)(1)(taat)(1)(00attatat)0(1)()(fadtattf)(1)()(00atfadttattf五、信号的分解信号从不同角度分解:信号从不同角度分解:直流分量与交流分量 偶
6、分量与奇分量 脉冲分量 实部分量与虚部分量 正交函数分量 利用分形理论描述信号1 1、直流分量与交流分量、直流分量与交流分量其中f fD D为直流分量即信号的平均值;fA(t)为交流分量,直流分量直流分量f fD D与交流分量与交流分量f fA A(t):(t):)()(tfftfAD1()()21()f()2foef tftf tft其中 为偶分量为奇分量2 2、偶分量与奇分量、偶分量与奇分量)()()()(tftftft:fooee即分解为)(tf)(tfe)(tfo(1)一种分解为矩形窄脉冲分量:f()组合极限其中为窄脉冲分量冲激信号的叠加3 3、脉冲分量、脉冲分量(2)另一分解为阶跃信
7、号分量之叠加。dttttftf)()()(114.4.实部分量与虚部分量实部分量与虚部分量 对于瞬时值为复数的信号f(t)可分解为实、虚部两个部分之和。分解为)(tf)(tfr)(tjfi 其实部为:)()(21)(*tftftfr 其复数信号的模为:)()()()()(22*2tftftftftfirj 其虚部为:)()(21)(*tftftfi系统的分类及性质 1.连续系统与离散系统 输入和输出均为连续时间信号的系统称为连续时间系统。输入和输出均为离散时间信号的系统称为离散时间系统。连续时间系统的数学模型是用微分方程来描述,而离散时间系统的数学模型是用差分方程来描述。2.动态系统与即时系统
8、 若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关,则称为动态系统或记忆系统。含有记忆元件(电容、电感等)的系统是动态系统。否则称即时系统或无记忆系统。3.线性系统与非线性系统 能同时满足齐次性与叠加性的系统称为线性系统。满足叠加性是线性系统的必要条件。不能同时满足齐次性与叠加性的系统称为非线性系统。4.时不变系统与时变系统 满足时不变性质的系统称为时不变系统。时不变性质:若系统满足输入延迟多少时间,其激励引起的响应也延迟多少时间5、因果系统与非因果系统 激励引起的响应不会出现在激励之前的系统,称为因果系统 即对因果系统,也就是说,如果响应r(t)并不依赖于将来的激励如
9、e(t+1),那么系统就是因果的。6.稳定系统与不稳定系统一个系统,若对有界的激励所产生的响应也是有界时,则称该系统为有界输入有界输出稳定,简称稳定。齐次解的函数形式仅与系统本身的特性有关,而与激励f(t)数形式无关,称为系统的固有响应或自由响应;特解的函数形式由激励确定,称为强迫响应。全响应齐次解全响应齐次解(自由响应自由响应)特解特解(强迫响应强迫响应)二、关于 0-和 0+初始值 1 1、0 0 状态和状态和 0 0 状态状态w 0 状态称为零输入时的初始状态。即初始值是由系统的储能产生的;w 0 状态称为加入输入后的初始状态。即初始值不仅有系统的储能,还受激励的影响。从从 0 0 状态
10、到状态到 0 0 状态的跃变状态的跃变w 当系统已经用微分方程表示时,系统的初始值从0 状态到 0 状态有没有跳变决定于微分方程右端自由项是否包含(t)及其各阶导数。w 如果包含有(t)及其各阶导数,说明相应的0状态到0状态发生了跳变。0 0 状态的确定状态的确定w 已知 0 状态求 0 状态的值,可用冲激函数匹配法。w 求 0 状态的值还可以用拉普拉斯变换中的初值定理求出。各种响应用初始值确定积分常数各种响应用初始值确定积分常数在经典法求全响应的积分常数时,用的是 0 状态初始值。在求系统零输入响应时,用的是 0 状态初始值。在求系统零状态响应时,用的是 0 状态初始值,这时的零状态是指 0
11、 状态为零。2、冲激函数匹配法、冲激函数匹配法 目的:用来求解初始值,求(0)和(0)时刻值 的关系。应用条件:如果微分方程右边包含(t)及其各阶导 数,那么(0)时刻的值不一定等于(0)时刻的值。原理:利用t0时刻方程两边的(t)及各阶导数 应该平衡的原理来求解(0)三、零输入响应和零状态响应三、零输入响应和零状态响应1 1、定义:、定义:(1 1)零输入响应:)零输入响应:没有外加激励信号的作用,只有起始状态所产生的响应。没有外加激励信号的作用,只有起始状态所产生的响应。(2 2)零状态响应:)零状态响应:不考虑起始时刻系统储能的作用,由系统外加激励信号所不考虑起始时刻系统储能的作用,由系
12、统外加激励信号所产生的响应。产生的响应。LTI LTI的全响应:的全响应:y(t)=yx(t)+yf(t)y(t)=yx(t)+yf(t)2 2、零输入响应、零输入响应(1 1)即求解对应齐次微分方程的解)即求解对应齐次微分方程的解3 3、零状态响应、零状态响应(1 1)即求解对应即求解对应非齐次微分方程的解非齐次微分方程的解自由响应强迫响应自由响应强迫响应零输入响应零状态响应零输入响应零状态响应暂态响应暂态响应+稳态响稳态响应应四系统响应划分四系统响应划分相互关系 零输入响应是自由响应的一部分,零状态响应有自由响应的一部分和强迫响应构成。0)34()42()()(3)(222teeeetyt
13、yetyttttfxt,自由响应自由响应强迫响应强迫响应零输入响应零输入响应零状态响应零状态响应H t th一冲激响应一冲激响应 1定义 系统在单位冲激信号系统在单位冲激信号(t)(t)作用下产生的作用下产生的零状态响零状态响应应,称为单位冲激响应,简称冲激响应,一般用,称为单位冲激响应,简称冲激响应,一般用h h(t t)表表示。示。2.2 冲激响应和阶跃响应 系统的输入 e(t)=u(t),其响应为 r(t)=g(t)。系统方程的右端将包含阶跃函数u(t),所以除了齐次解外,还有特解项。我们也可以根据线性时不变系统特性,利用冲激响应与阶跃响应关系求阶跃响应。二阶跃响应1定义 系统在单位阶跃
14、信号作用下的零状态响应,称为单位阶跃响应,简称阶跃响应,一般用g(t)表示。H tu tg tt0,对因果系统:对因果系统:积分,注意积分限:积分,注意积分限:阶跃响应是冲激响应的阶跃响应是冲激响应的2阶跃响应与冲激响应的关系线性时不变系统满足微、积分特性 ttttud)()(ttthtgd)()(tftftf21)()(*)()()(thtfdthftyf任意信号的零状态响应即为:三、卷积积分的性质三、卷积积分的性质1 1、卷积的代数性质、卷积的代数性质w 交换律:1(t)2(t)=2(t)1(t)w 分配律:1(t)2(t)+3(t)=1(t)2(t)+1(t)3(t)w 结合律:1(t)
15、2(t)3(t)=1(t)2(t)3(t)时移性质时移性质若1(t)2(t)=(t),则有1(t-t1)2(t-t2)=(t-t1-t2)2 2、主要性质:、主要性质:w 微分性质:)()()()()(2121tftftftftf)()()()()(2)1(1)1(21)1(tftftftftfw 积分性质:)()()()()()1(212)1(1tftftftftfw 微积分性质:注:应用(1),(3)性质的条件是)()(11tfdft必须成立0)()(lim11ftft即必须有;否则不能应用。)()()()()()()()()()()1(2121)(2)(1)(21tftftftftftf
16、tftftftfjiji特例:若f(t)f(t)与阶跃函数的卷积:与阶跃函数的卷积:dftutft)()()(f(t)f(t)与冲激函数的卷积:与冲激函数的卷积:(t)(t)=f(t)(t)(t-t0)=(t-t0)(t-t1)(t-t2)=(t-t1-t2)(t-t1)(t-t2)=(t-t1-t2)f(t)f(t)与冲激偶函数的卷积:与冲激偶函数的卷积:(t)(t)=f(t)(t)=(t)(t)(t)=(t)dfdtfttutfttt)()()()(000本章总结:本章总结:1 1、LTILTI连续系统的响应:连续系统的响应:全响应齐次解全响应齐次解(自由响应自由响应)特解特解(强迫响应强
17、迫响应)2 2、关于、关于0-0-和和0+0+初始值初始值 当系统已经用微分方程表示时,如果包含有当系统已经用微分方程表示时,如果包含有(t)(t)及其各阶导数,及其各阶导数,说明相应的说明相应的0 0状态到状态到0 0状态发生了跳变。状态发生了跳变。冲激函数匹配法冲激函数匹配法:mimmnmmnCtyCtCtCtyCtCtCty)()(.)()()(.)()()(12)2()1(01)1()(3、零输入响应和零状态响应 y(t)=yx(t)+yf(t)自由响应强迫响应;暂态响应+稳态响应;零输入响应零状态响应4、冲激响应和阶跃响应5、卷积积分 卷积过程可分解为四步:(1)换元:t换为得f1(
18、),f2()(2)反转平移:由f2()反转 f2()右移t f2(t-)(3)乘积:f1()f2(t-)(4)积分:从到对乘积项积分。40主要内容主要内容v第一部分:周期信号的傅里叶分析第一部分:周期信号的傅里叶分析一、信号的正交分解一、信号的正交分解二、周期信号的傅里叶级数二、周期信号的傅里叶级数三、周期信号的频谱及特点三、周期信号的频谱及特点四、周期信号的功率谱四、周期信号的功率谱五、有限傅里叶级数五、有限傅里叶级数v第二部分:非周期信号的傅里叶变第二部分:非周期信号的傅里叶变换换一、非周期信号的傅里叶变换一、非周期信号的傅里叶变换二、常用信号的傅里叶变换二、常用信号的傅里叶变换三、傅里叶
19、变换的性质三、傅里叶变换的性质四、周期信号的傅里叶变换四、周期信号的傅里叶变换五、抽样信号的傅里叶变换五、抽样信号的傅里叶变换六、抽样定理六、抽样定理411.傅里叶级数的三角形式傅里叶级数的三角形式01()cos()sin()nnnf taan tbn t2201()TTaf t dtT222()cos()TTnaf tn t dtT222()sin()TTnbf tn t dtT周期信号 的周期为 ,角频率为 ,频率当满足狄里赫利(Dirichlet)条件时,可分解为如下三角级数:()f tT系数 ,称为傅里叶系数,nanb二、周期信号的傅里叶级数an是n的偶函数bn是n的奇函数2v42将上
20、式同频率项合并,可得:01()cos()nnnf tAAn t其中:00Aa22nnnAabarctan()nnnba或01()sin()nnnf tBBn t其中:00Ba22nnnBabarctan()nnnba上面式子表明,周期信号可以表示为直流和许多正(余)弦分量之和。通常把频率为基频 的分量称为基波;频率为基频的n倍的分量称为n次谐波。二、周期信号的傅里叶级数432.函数的对称性与傅里叶系数的关系函数的对称性与傅里叶系数的关系二、周期信号的傅里叶级数443.傅里叶级数的指数形式傅里叶级数的指数形式二、周期信号的傅里叶级数周期信号的傅里叶级数也可表示为指数形式:01()()22jn t
21、jn tnnnnnajbajbf taee1()()2nnF najb1()()2nnFnajb令 则01()()()()jn tjn tnjn tnf taF neFneF ne可得:221()()TTjn tnFF nf t edtT其中 称为傅里叶系数45表明:任意周期信号f(t)可分解为许多不同频率的复指数信号之和。Fn 是频率为n的分量的系数,F0=a0为直流分量。狄利克雷狄利克雷(Dirichlet)条件条件在一个周期内,间断点的数目应该有限;在一个周期内,极值数目应该有限;在一个周期内,信号绝对可积,即二、周期信号的傅里叶级数22|()|TTf t dt 三、周期信号的频谱及特点
22、三、周期信号的频谱及特点2.周期信号频谱的特点周期信号频谱的特点如果周期如果周期T无限增大,结果会怎样无限增大,结果会怎样离散频谱特性离散频谱特性:1.周期信号的谱线位置是基频的整数倍。周期信号的谱线位置是基频的整数倍。2.增大,间隔增大,间隔 减小,频谱变密,幅度减小。减小,频谱变密,幅度减小。3.减小,间隔减小,间隔 增大,频谱变疏,幅度增大。增大,频谱变疏,幅度增大。TT2T帕塞瓦尔帕塞瓦尔(Parseval)功率守恒定理功率守恒定理周期信号一般是功率信号,其平均功率为:222200111()|2Tnnnnft dtaAFT四、周期信号的功率谱四、周期信号的功率谱物理意义物理意义:任意周
23、期信号的平均功率等于信号所包含的任意周期信号的平均功率等于信号所包含的直流、基波以及各次谐波的平均功率之和。直流、基波以及各次谐波的平均功率之和。周期信号的周期信号的功率频谱功率频谱:随随 的分布情况,称为周的分布情况,称为周期信号的功率频谱,简称期信号的功率频谱,简称功率谱功率谱。n2|nF吉布斯吉布斯(Gibbs)现象现象:对于具有不连续点对于具有不连续点(跳变点跳变点)的波形,用有限次谐波分量来的波形,用有限次谐波分量来近似原信号,虽然所取的项数越多,近似波形的方均误差近似原信号,虽然所取的项数越多,近似波形的方均误差可以减少,但在跳变点处的可以减少,但在跳变点处的峰起值峰起值不能减小,
24、此峰随项数不能减小,此峰随项数增多向跳变点靠近,而峰起值趋近为跳变值的增多向跳变点靠近,而峰起值趋近为跳变值的9%。原因原因:时间信号存在跳变破坏了信号的收敛性,使得在间断点傅时间信号存在跳变破坏了信号的收敛性,使得在间断点傅里叶级数出现非一致收敛。里叶级数出现非一致收敛。2当周期信号周期当周期信号周期T时,周期信号就成为非周期信号。此时,周期信号就成为非周期信号。此时谱线间隔时谱线间隔 趋近于无穷小,从而信号的频谱变为趋近于无穷小,从而信号的频谱变为连续连续频谱频谱。各频率分量的。各频率分量的幅度也趋近于无穷小幅度也趋近于无穷小,不过,这些无,不过,这些无穷小量之间仍有差别。穷小量之间仍有差
25、别。为了描述非周期信号的频谱特性,引入为了描述非周期信号的频谱特性,引入频谱密度频谱密度的概念。的概念。令令一、非周期信号的傅里叶变换一、非周期信号的傅里叶变换000002()()limlim()TF nFF nT0称称 为为频谱密度函数频谱密度函数。()F1.从傅里叶级数到傅里叶变换从傅里叶级数到傅里叶变换一、非周期信号的傅里叶变换一、非周期信号的傅里叶变换根据傅里叶级数根据傅里叶级数2021()TTjntnFf t edtT202()TTjntnF Tf t edt有有2021()TTjntnf tF TedtT考虑到考虑到T 0无穷小无穷小记为记为d0n(由离散量过渡到连续量由离散量过渡
展开阅读全文