人教版高中数学选修313空间向量的数量积运算-4课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版高中数学选修313空间向量的数量积运算-4课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 选修 313 空间 向量 数量 运算 课件 下载 _其他版本_数学_高中
- 资源描述:
-
1、3.1.3空间向量的数量积运算空间向量的数量积运算一、共线向量一、共线向量:零向量与任意向量共线零向量与任意向量共线.1.1.共线向量共线向量:如果表示空间向量的有向线段所在直如果表示空间向量的有向线段所在直线互相平行或重合线互相平行或重合,则这些向量叫做共线向量则这些向量叫做共线向量(或平行向或平行向量量),),记作记作ba/2.2.共线向量定理共线向量定理:对空间任意两个向量对空间任意两个向量 的充要条件是存在实数的充要条件是存在实数使使baobba/),(,ba 推论推论:如果如果 为经过已知点为经过已知点A A且平行已知非零向量且平行已知非零向量 的直线的直线,那么对任一点那么对任一点
2、O,O,点点P P在直线在直线 上的充要条件是存上的充要条件是存在实数在实数t,t,满足等式满足等式OP=OA+tOP=OA+t 其中向量其中向量a叫做直线的方向叫做直线的方向向量向量.llaaOABPa 若若P P为为A,BA,B中点中点,则则12 O PO AO B2.2.共面向量定理共面向量定理:如果两个向量如果两个向量 不共线不共线,则向量则向量 与向量与向量 共面的充要共面的充要条件是存在实数对条件是存在实数对 使使,abyx,Px ay bp,abOMabABAPp 推论推论:空间一点空间一点P P位于平面位于平面MABMAB内的充要条件是存在内的充要条件是存在有序实数对有序实数对
3、x,yx,y使使 或对空间任一点或对空间任一点O,O,有有 M Px M Ay M B O PO Mx M Ay M B注意:注意:空间四点空间四点P、M、A、B共面共面 存存 在在 唯唯 一一实数对实数对,xyM Px M Ay M B ()使 得(1)O Px O MyO AzO Bxyz 其其 中中,平面向量数量积的相关知识平面向量数量积的相关知识复习:复习:平面向量的夹角:平面向量的夹角:AOBAB叫做向量叫做向量 a与与 b的夹角。的夹角。已知两个非零向量已知两个非零向量 a 和和 b,在平面上取一点在平面上取一点O,作作OA=a,OB=b,则则AOB平面向量的数量积的定义:平面向量
4、的数量积的定义:平面向量的数量积平面向量的数量积已知两个非零向量已知两个非零向量a,b,则,则|a|b|cos叫做向量叫做向量a,b的数量积,记作的数量积,记作ba 即即cos|baba并规定并规定 0 0a教学过程一、几个概念一、几个概念babaAOBbOBaOAOba,.,记作:的夹角,与叫做向量则角作,在空间任取一点量如图,已知两个非零向abbaba,0被唯一确定了,并且量的夹角就在这个规定下,两个向范围:1 1)两个向量的夹角的定义两个向量的夹角的定义bababa互相垂直,并记作:与则称如果,2,O OA AB Baabb2 2)两个向量的数量积)两个向量的数量积注意:注意:两个向量的
5、数量积是数量,而不是向量两个向量的数量积是数量,而不是向量.零向量与任意向量的数量积等于零。零向量与任意向量的数量积等于零。babababababababaaaOAaOA,cos,cos,即记作:的数量积,叫做向量,则已知空间两个向量记作:的长度或模的长度叫做向量则有向线段设3 3)射影)射影eaeaABBAelABBABlBAlAllelaAB,cos,111111射影。方向上的正射影,简称或在上的在轴叫做向量,则上的射影在作点上的射影在点同方向的单位向量。作上与是,和轴已知向量BAleA1B1注意:是轴注意:是轴l l上的正射影上的正射影,A,A1 1B B1 1是一个可正可负的实数,它的
6、符号代表向是一个可正可负的实数,它的符号代表向量与量与l l的方向的相对关系,大小代表在的方向的相对关系,大小代表在l l上射影的长度。上射影的长度。4)4)空间向量的数量积性质空间向量的数量积性质 aaababaeaaea2)30)2,cos)1注意:注意:性质性质2 2)是证明两向量垂直的依据;)是证明两向量垂直的依据;性质性质3 3)是求向量的长度(模)的依据;)是求向量的长度(模)的依据;对于非零向量对于非零向量 ,有:,有:,ab5)5)空间向量的数量积满足的运算律空间向量的数量积满足的运算律 注意:注意:分配律)交换律)()(3()2)()()1cabacbaabbababa数量积
展开阅读全文