书签 分享 收藏 举报 版权申诉 / 64
上传文档赚钱

类型第4章计量值假设检验与估计课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:5671699
  • 上传时间:2023-05-01
  • 格式:PPT
  • 页数:64
  • 大小:4.35MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第4章计量值假设检验与估计课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    量值 假设检验 估计 课件
    资源描述:

    1、2023-5-1质量管理统计1第四章第四章 计量值的假设检验与估计计量值的假设检验与估计l本章将讨论产品重量、尺寸、加工温度、工作时间本章将讨论产品重量、尺寸、加工温度、工作时间等服从正态分布的计量值数据,在改变作业等条件等服从正态分布的计量值数据,在改变作业等条件下,总体分布的平均值及方差是否发生变化。介绍下,总体分布的平均值及方差是否发生变化。介绍检验两个总体分布是否存在差异、估计其差异大小检验两个总体分布是否存在差异、估计其差异大小的方法。也因方差或平均值的信息是否精确而有所的方法。也因方差或平均值的信息是否精确而有所不同,根据具体问题选用不同,根据具体问题选用 分布、分布、分布、分布、

    2、分布或分布或正态分布。正态分布。F2t2023-5-1质量管理统计2第一节第一节 方差的假设检验与估计方差的假设检验与估计l质量管理就是要生产出质量波动小的产品。反映波动大小的方差和平均值是决定概率分布的两个重要参数。方差的假设检验和估计往往容易被忽略,其实它与平均值的假设检验和估计具有同样的重要性。本节介绍总体方差的假设检验与估计,以及两个总体方差之差的假设检验方法。2023-5-1质量管理统计3总体方差的假设检验与估计总体方差的假设检验与估计l从总体方差从总体方差 2的正态分布中随机抽取大小为的正态分布中随机抽取大小为n的样的样本,其测量值的平方和为本,其测量值的平方和为S,则,则 S/2

    3、服从自由度服从自由度v=(n-1)的的 分布。据此可以进行总体方差的假设分布。据此可以进行总体方差的假设检验与估计。检验与估计。22023-5-1质量管理统计4 分布分布l从标准正态分布N(0,1)中随机抽取大小为n的样本,其测定值为x1,x2,xn,则,2222212nxxx l 服从自由度为v=n的 分布。22l4-12023-5-1质量管理统计5 分布分布l从正态分布N(,2)中抽取的样本,其测量值xi的标准变换为:22221/niixl 服从自由度为v=n的 分布。如用n个样本的平均值 替代总体均值 ,则:22x22221/niixxSl 服从自由度为v=(n-1)的 分布。22l4-

    4、3l4-22023-5-1质量管理统计6 分布分布l不同自由度的 分布的形状如图4-1所示。由于不取负值,分布呈右尾长的形状,其平均值为v、标准差为 。v2222023-5-1质量管理统计7l 分布除了用于总体方差的估计和假设检验外,在本书第五章计数值的假设检验中,用于判断分布异同的拟合度假设检验等。分布分布222023-5-1质量管理统计8l表表4-1是是 分布表的一部分。例如,当自由度为分布表的一部分。例如,当自由度为v=5时,时,P=0.05所在的所在的列为列为v=5所在行交点的数字为所在行交点的数字为11.07。2 分布分布22023-5-1质量管理统计9总体方差的假设检验总体方差的假

    5、设检验l工厂生产某种产品的回收量一直比较稳定,平均82.0kg,标准差4.0kg。最近改变了部分生产方法,从已生产的产品中随机抽取10批产品,数据为82,89,81,90,84,83,88,80,85,90(单位:kg),新旧方法回收量的波动有差异吗?2023-5-1质量管理统计10总体方差的假设检验总体方差的假设检验l在这个问题中,原生产过程长期稳定,回收量能够反映其总体的情况。用 分布检验改变生产方法后,其回收量是否可以看作是总体方差为 的总体的样本。假设检验的步骤如下。222042023-5-1质量管理统计11总体方差的假设检验总体方差的假设检验l建立假设,确定显著性水平05.00.4:

    6、,0.4:221220HHl根据新生产方法的回收量数据计算平方和S。kgxxSi6.1292l用公式4-3计算 ,则:210.80.4/6.129/2202S2023-5-1质量管理统计12总体方差的假设检验总体方差的假设检验l查 分布表,求自由度v=(n-1)=9、双侧概率为5%的 分布临界值(图4-3)每侧0.025。得:22 02.19970.2922975.0025.02023-5-1质量管理统计13总体方差的假设检验总体方差的假设检验l进行假设检验。02.19910.870.29222975.0025.0l因此,不能拒绝原假设,不能说新旧两种生产方法回收量的波动有差异,即得出结论是不

    7、能说发生了变化。2023-5-1质量管理统计14总体方差的估计总体方差的估计l利用上面随机抽取的10批产品回收量的数据来估计方差。方差的点估计量为:122nSsl所以点估计值为:22224.141106.1291kgkgnSs2023-5-1质量管理统计15总体方差的估计总体方差的估计l估计置信度(1-)的方差置信区间的方法如下:l利用从方差为 2的总体中抽取的样本计算S/2。设小于 的概率为/2,大于 的概率为/2,如图44所示:212222221S21222SSl即为(1-)置信度下,总体方差的置信区间。2023-5-1质量管理统计16总体方差的估计总体方差的估计l因此,置信度为95%时,

    8、新生产方法回收量的总体方差的估计值是:992025.022975.0SS0.4881.670.26.12902.196.12922l即方差的置信区间为6.8148.0kg2。l即2023-5-1质量管理统计17两组数据方差之差的假设检验两组数据方差之差的假设检验l分别计算从具有相同方差的正态分布中抽取的两组样本的方差,并求其方差比F0。因为此值服从F分布,所以可以利用F分布检验两组数据的方差是否有差异。2023-5-1质量管理统计18F分布分布l从具有相同方差的正态总体中抽取数量为从具有相同方差的正态总体中抽取数量为n1、n2的两组样本,分的两组样本,分别计算方差别计算方差V1(或(或s12)

    9、及)及V2(或或s22),求其方差比:),求其方差比:21VVF lF值服从自由度值服从自由度V1=(n1-1)、V2=(n2-1)的的F分布。分布。F分布的分布的形状随分子分母的自由度而形状随分子分母的自由度而变化,与卡方分布类似,不变化,与卡方分布类似,不取负数值,如图取负数值,如图4-5所示,右所示,右尾长。尾长。2023-5-1质量管理统计19F分布分布lF分布除了用于总体方分布除了用于总体方差之差的假设检验,还差之差的假设检验,还可用于方差分析等多组可用于方差分析等多组平均值之差的假设检验。平均值之差的假设检验。表表4-3是是F分布表的一部分布表的一部分。分。2023-5-1质量管理

    10、统计20F分布分布l F分布的性质),(1),(12211nnnnFF),(1),(nmFFmnFF则如果2023-5-1质量管理统计21两组数据方差之差的假设检验两组数据方差之差的假设检验l例1:从两处煤矿各抽样数次,分析其含灰率(%),假定各煤矿含灰率,都服从正态分布,依次取容量为5,4的两独立样本,测得样本方差 s12=7.505,s22=2.593,问两处煤矿的含灰率的方差是否有显著差异(=0.05)2023-5-1质量管理统计22两组数据方差之差的假设检验两组数据方差之差的假设检验解:依题意提出假设 H0:12=22 H1:12 22 利用公式求出F2.894而 =0.05,查F分布

    11、表得F/2(4,3)=F0.025(4,3)=15.10可见 0.10 2.894 3.50=F0.05(7,8),所以拒绝原假设H0:12 22,接受H1:12 22,因而认为甲车床生产的滚珠的直径的方差大于乙车床211222 (1,1)nn sFFs F 2023-5-1质量管理统计25第二节第二节 平均值的假设检验与估计平均值的假设检验与估计l第三章阐述了假设检验、区间估计的思路。本节讲述第三章阐述了假设检验、区间估计的思路。本节讲述总体均值及两组数据平均值之差的假设检验与估计。总体均值及两组数据平均值之差的假设检验与估计。前者是以样本的平均值为基础的,检验抽取样本总体前者是以样本的平均

    12、值为基础的,检验抽取样本总体均值与某个总体均值是否有差异,并估计其总体均值。均值与某个总体均值是否有差异,并估计其总体均值。后者以两组样本的平均值为基础,检验样本所属总体后者以两组样本的平均值为基础,检验样本所属总体的平均值是否存在差异,并估计其差异。的平均值是否存在差异,并估计其差异。2023-5-1质量管理统计26总体均值的假设检验与估计总体均值的假设检验与估计l总体均值假设检验是当改变作业方法或部分设备时,用变更总体均值假设检验是当改变作业方法或部分设备时,用变更后的后的n个数据的平均值,检验变更前后总体均值是否不同。个数据的平均值,检验变更前后总体均值是否不同。l总体均值估计是运用变更

    13、后的总体均值估计是运用变更后的n个样本的值估计变更后的总体个样本的值估计变更后的总体均值。均值。l在进行总体均值的假设检验和估计时,一种是在总体方差已在进行总体均值的假设检验和估计时,一种是在总体方差已知的条件下检验、估计;另一种是在总体方差未知利用知的条件下检验、估计;另一种是在总体方差未知利用n个样个样本的方差估计值检验、估计。两种情况下,所采用的检验、本的方差估计值检验、估计。两种情况下,所采用的检验、估计的公式有所不同。估计的公式有所不同。l前者用第三章讲述的正态分布进行检验和估计,后者必须用前者用第三章讲述的正态分布进行检验和估计,后者必须用t分布进行假设检验和估计。分布进行假设检验

    14、和估计。2023-5-1质量管理统计27t分布分布 ,),(),1,0(2称随机变量独立,则若YXYNXnnnYXY/XT 所服从的分布为。,记记作作)(ntT分布的自由度是tn 标标准准正正态态分分布布。分分布布将将趋趋于于限限增增大大时时,可可以以证证明明,当当自自由由度度无无t 2023-5-1质量管理统计28,称称满满足足条条件件:对对于于给给定定的的)10(分分位位点点。上上 :由由概概率率密密度度的的对对称称性性知知近近似似。时时,利利用用当当的的情情形形,分分布布表表中中只只列列出出自自由由度度),(1030301Nnt )(nt)(1nt )(nttP)()(1ntnt 分分布

    15、布的的为为的的点点 tnt)(例:例:)(t.8101.3971039718.)(tP t分布的临界值分布的临界值(分位点)2023-5-1质量管理统计29t分布分布问题:若 XN(,2),Y/2 2(n),且X与Y相互独立,则nY-XT 证明:),(N10 -X)n(tnn/YXY-XT 2且与Y相互独立,则)n(t2023-5-1质量管理统计30t分布分布)(1 ntnSXT 证明:XN(,2/n),(Nn10 X(n-1)S2/2 2(n1),相互独立)n/(S)n(nXT1122 )n(t1),(Nn10 X正态总体下有下面2个等式成立:2023-5-1质量管理统计31t分布分布l表4

    16、-5是t分布表的一部分。2023-5-1质量管理统计32总体方差已知时总体均值的假设检验与估计总体方差已知时总体均值的假设检验与估计l 2已知(U检验法)l设总体X N(,2),2=02已知,是待检参数,检验显著性水平为,样本(X1,X2,Xn)来自总体X。2023-5-1质量管理统计33)1,0(NnUX 总体方差已知时总体均值的假设检验与估计总体方差已知时总体均值的假设检验与估计 由于样本均值 是总体 的优良估计量,是待检参数,检验水平为,(X1,X2,Xn)来自总体X。当H0为真时,的取值应在0 的附近,而 所以对 XX2,XN 2023-5-1质量管理统计34l即当H0为真时,U 的取

    17、值应l在 0 的附近,这时,若一次抽样l所得样本值使得 U 的值太大或太小,就应该拒绝H0检验水平为时,对双侧检验,拒绝域2:WUUu 2023-5-1质量管理统计35原假设的提出形式原假设的提出形式检验水平为时,拒绝域 2:WUUu 3:WUUu O-U OU O/2U/2/2-U/2考虑 2已知时均值 的三种形式的假设(1)H0:0 H1:0(2)H0:0 H1:0(3)H0:0 H1:0其中 0 是某个给定的数 21:WUUu )1,0(NnU X2023-5-1质量管理统计36求得U=1.08例1:某厂一车间生产一零件,其直径据经验服从N(,5.2),为了检验这一车床生产是否正常,现抽

    18、取容量为 n=100的样本,样本均值x=26.56,要求在显著性水平=0.05下检验双边假设H0:26 H1:26)1,0(NnU X解:方差 2=5.2已知,利用公式而由=0.05,查标准正态分布表得U/2=U0.025=1.96可见|U|=1.081.96=U/2=U0.025O/2U/2/2-U/2所以不能拒绝原假设H0:26因而认为生产是正常的2023-5-1质量管理统计37求得U=1.08例2:某厂一车间生产一零件,其直径据经验服从N(,5.2),为了检验这一车床生产是否正常,现抽取容量为 n=100的样本,样本均值x=26.56,要求在显著性水平=0.05下检验右边假设H0:26

    19、H1:26)1,0(NnU X解:方差 2=5.2已知,利用公式而由=0.05,查标准正态分布表得U=U0.05=1.64可见 U=1.081.64=U=U0.05OU 所以不能拒绝原假设H0:26因而认为生产是正常的2023-5-1质量管理统计38求得U=1.08例3:某厂一车间生产一零件,其直径据经验服从N(,5.2),为了检验这一车床生产是否正常,现抽取容量为 n=100的样本,样本均值x=26.56,要求在显著性水平=0.05下检验左边假设H0:26 H1:26)1,0(NnU X解:方差 2=5.2已知,利用公式而由=0.05,查标准正态分布表得U=U0.05=1.64可见-U=-U

    20、0.05=-1.64 1.98=t/2=t0.025所以拒绝原假设H0:65 因而认为这种型号的玻璃纸没有达到横向延伸率的指标2115 8181niis(XX).n 解:方差 2 未知,利用公式由样本算出45 06x.X1 t(1)TnnS O/2t/2/2-t/22023-5-1质量管理统计47方差未知时总体均值的估计方差未知时总体均值的估计 2未知:所以 的置信系数为1-的置信区间:1)-(n ,1)-(n22tntnsXsX枢轴变量为)1(ntnSt X2)1()1(2 ntntP -1)1()1(2/2/ntSntPX而而2/2(1)tn/2(1)tn2023-5-1质量管理统计48例

    21、:从大批灯泡中随机地抽取5个,测得寿命为(单位:小时):1650,1700,1680,1820,1800,假定灯泡寿命XN(,2),求这批灯泡平均寿命的区间估计(=0.05)。1)-(n ,1)-(n22tntnsXsX由n=5,查 t 分布表得 t0.025(4)=2.776。x=1730,s=75.50。所以,得 的区间估计为 1636.27,1823.73。解:方差 2未知,利用公式:niiXns122)(11X(4)5 ,(4)5025.0025.0ttsXsX2023-5-1质量管理统计49两组数据平均值之差的假设检验与估计两组数据平均值之差的假设检验与估计考虑三种形式的假设(1)H

    22、0:1 2 H1:1 2(2)H0:1 2 H1:1 2(3)H0:1 2 H1:1 2 若令=1-2,则变为(1*)H0*:0 H1*:0(2*)H0*:0 H1*:0(3*)H0*:0 H1*:0平均值之差的假设检验:2023-5-1质量管理统计501、12,22都已知22121212(,)XYNnn 样本(X1,X2,Xn1)来自总体XN(1,12),(Y1,Y2,Y n2)来自总体YN(2,22),并假定X 与 Y 相互独立令=1-2,当H0:0 成立时,有221212(0,)XYNnn 即即221212()(0,1)nn XYUN由于2023-5-1质量管理统计51l即当H0:=0

    23、为真时,U的取值在0附近,从而检验水平为时,拒绝域W分别由下式得到2(1)W=U:|U|u (2)W=U:Uu (3)W=U:Uu 2023-5-1质量管理统计522、12=22=2 ,但2未知即当H0:0 成立时,T的取值在0附近,从而检验水平为时拒绝域W分别见下式122(1)W=T:|T|t(n+n2)12(2)W=T:T(n+n2)t 12(3)W=T:Tt(n+n2)O-t Ot O/2t/2/2-t/2122211221212()(n+n2)(n1)(n1)11(n+n2)nnt XYTSS-2023-5-1质量管理统计53解:依题意提出假设 H0:1 2 H1:1 2 例1:卷烟一

    24、厂向化验室送去A,B两种烟草,化验尼古丁的含量是否相同,从A,B中各随机抽取重量相同的5例进行化验,测得尼古丁的含量(单位:毫克),并由此得到:拒经验知,A的尼古丁含量服从N(1,5),B的尼古丁含量服从N(2,8).问两种烟草的尼古丁平均含量 1、2 是否有差异(=0.05)24.4 X 毫毫克克27Y 毫毫克克由于 12,22都已知,故利用公式求出U=1.612而 =0.05,查标准正态分布表得U/2=U 0.025=1.96可见|U|=1.612 1.96=U 0.025=U/2,所以接受原假设H0:1 2,因而认为两种烟草的尼古丁平均含量无差异。221212()(0,1)nn XYUN

    25、2023-5-1质量管理统计54解:依题意提出假设 H0:1 2 H1:1 2 例2:为比较A,B两种型号灯泡的寿命差异,随机抽取A型灯泡5只,测得 ,方差S12=965.2,随机抽取B型灯泡5只,测得 ,方差S22=1076.2,设总体都是正态的,)1262.8 X 小小时时1268.2 Y 小小时时利用公式122211221212()(n+n2)(n1)(n1)11(n+n2)nnt XYTSS-求出T=0.267 而 =0.05,查t分布表得t/2(8)=t0.025(8)=2.306可见|T|=0.267 2.306=t0.025=t/2,所以接受原假设H0:1 2因而认为A,B两种型

    26、号灯泡的平均寿命无差异。O/2t/2/2-t/2并且知它们的方差相等.问平均寿命 1、2 是否有差异(=0.052023-5-1质量管理统计55两组数据平均值之差的假设检验与估计两组数据平均值之差的假设检验与估计平均值之差的区间估计:1、均值差 1-2的区间估计 12,22都已知 令枢轴变量为2212,X Y s s 设样本(X1,X2,Xn1)来自正态总体XN(1,12),(Y1,Y2,Y n2)来自正态总体YN(2,22),并假定X 与 Y 相互独立 分别是两样本的均值和方差,1-是给定的置信系数2023-5-1质量管理统计56XYXY22221212/2/21212(),()nnnnuu

    27、 所以 1-2的置信系数为1-的置信区间:2120 )u(/XY12/2/2221212()()()1-nnPuu 而而O/2U/2/2-U/2XYUN12221212()()(0,1)nn 2023-5-1质量管理统计57解:由=0.1,查标准正态分布表得 U/2=U0.05=1.645因 n1=10,n2=12,12=25,22=36,所以,例1:设自总体XN(1,25)得到一容量为10的样本,其样本均值 ,自总体YN(1,36)得到一容量为12的样本,其样本均值 ,并且两样本 相互独立,求 1-2的置信区间(=0.1)。19 8x.24 0y.22121225365.52.345nn10

    28、12得1-2的置信区间为-8.06,-0.34。XYXY22221212/2/21212 (),()nnnnuu 由由2023-5-1质量管理统计5812=22=2 ,但2未知 令枢轴变量为X YTSS-12122211221212()()(n+n2)(n1)(n1)11(n+n2)nnt SSX Y-SSX Y-221122121212221122121212(n1)(n1)11()(n+n2),(n+n2)nn(n1)(n1)11 ()(n+n2)(n+n2)nntt 所以 1-2的置信系数为1-的置信区间:2023-5-1质量管理统计59例2:为比较A,B两种型号灯泡的寿命,随机抽取A型

    29、灯泡5只,测得 ,标准差SA=28小时,随机抽取B型灯泡5只,测得 ,标准差SB=32小时,设总体都是正态的,并且由生产过程知它们的方差相等.求 1-2 的置信区间(=0.01)A1000 X 小小时时B980 X 小小时时2023-5-1质量管理统计60l解:由抽样的随机性可推知样本灯泡相互独立,又因为它们的总体方差相等,所以由SSXY-SSXY-221122121212221122121212(n1)(n1)11()(n+n2),(n+n2)nn(n1)(n1)11 ()(n+n2)(n+n2)nntt 因 n1=5,n2=7,SA=28,SB=32,而 =0.01,查t-分布表得 t/2

    30、(10)=t0.005(10)=3.169,,所以B980X A1000 X 得1-2的置信区间为-36.53,76.53。2023-5-1质量管理统计61作业作业1、长期以来一直从A企业购入材料,平均交货期为28天。最近,从交货迅速的B企业购入9次材料,交货期如下(单位:天):22 29 21 30 24 23 28 20 31l是否可以认为B企业交货迅速;l计算B企业交货期的波动(方差);l估计B企业的平均交货期。2023-5-1质量管理统计62l2、下列数据是在A、B两种成形条件下生产的合成树脂的抗弯曲强度(单位:kg/mm2)A:13.7 14.5 13.8 15.2 24.7 14.

    31、1 13.4 14.2 11.5 11.5B:12.3 11.1 11.5 13.9 10.8 12.5 11.5 13.5 14.0 12.1(1)检验不同成形条件下的方差和平均值是否有差异(2)估计平均值的差。2023-5-1质量管理统计63l3、分别测量了8块铁板AB两处的厚度,获得的数据如下表。认为制造方法A比方法B生产的厚度大。样本 1 2 3 4 5 6 7 8A 5.25 5.16 5.24 5.20 5.24 5.32 5.23 5.28B 5.20 5.09 5.18 5.22 5.21 5.25 5.17 5.25(1)通过假设检验确定通过假设检验确定A是否比是否比B厚?厚?(2)估计)估计A与与B厚度的置信区间。厚度的置信区间。2023-5-1质量管理统计64结结 束束第四章 计量值的假设检验与估计

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第4章计量值假设检验与估计课件.ppt
    链接地址:https://www.163wenku.com/p-5671699.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库