《Advanced RS DIP》课件Ch11 image restory.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《Advanced RS DIP》课件Ch11 image restory.ppt》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Advanced RS DIP Advanced RS DIP课件Ch11 image restory Advanced DIP 课件 Ch11
- 资源描述:
-
1、-()0 td t*-1(,),()()()*()stuWf u sftf tdtfuss*1()()sttss*()()sss/2()2(2)jjnxxk2jnk21j111fiddf0ixMx 0iyMy ifdMd(,)ooxyThe truncated spherical exit wave)(2)(222),(),(aayyxxjaiaiyxdkjiiidydxeydxdpejyxuaiaiiiiooooooioiiiidydxMyMxuyyxxhyxu),(),(),(,)(,)iaiah x ypd xd y),(oooyxu),(oooMyMxu),(),(vdudpvuHii
2、),(iiyxooooooioiiidydxMyMxIyyxxhyxI),(),(),(2Part 3 Technology and Part 3 Technology and ApplicationsApplications10 Image Restoration10 Image RestorationChapter16 Chapter16 Image Restoration Image Restoration 16.2 Classical restoration16.3 Linear algebraic restoration16.4 restoration of less restric
3、ted degradations16.5 Superresolution16.6 System identification16.7Noise modeling16.8 Implementation16.2 Classical RestorationClassification of filtersClassification of filters lowpass Basic filter types bandpass,bandstophighpass Wiener estimator design of two linear filters the matched detector nonl
4、inear filter),(),(),(),(),(),(2vuPvuPvuHvuPvuHvuGnfffP and are the power spectra of the signal and noise,respectivelynP)()()(tytstedtteteMSE)()(22Points:Given the power spectra of Given the power spectra of that minimizes the mean square that minimizes the mean square error;error;is positive for bot
5、h positive and negative errors.Squaring the error causes large errors to be “penalized”more severely than small errors。2()e t()()()()s t n ts tn t00()()()()()()snnsnP s P sMSEdsP s Hs dsP sP sBased on formula(2),we can derive and prove the Based on formula(2),we can derive and prove the conclusions
6、belowconclusions below:0s 0()()()()ssnP sHsP sP sFigure 5 Wiener deconvolutionFigure 5 Wiener deconvolution0()()1()()()()()ssnHsP sG sF sF sP sP sThe transfer function of the optimal deconvolution filter in the mean square sense is:S(t)w(t)x(t)n(t)y(t)z(t)F(s)1/F(s)0()Hs+G(s)12*2),(/),(),(),(),(),()
展开阅读全文