书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型天津市和平区2020届高三第二次质量调查(二模)数学试题 Word版含答案.doc

  • 上传人(卖家):cbx170117
  • 文档编号:566445
  • 上传时间:2020-06-08
  • 格式:DOC
  • 页数:9
  • 大小:1.11MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《天津市和平区2020届高三第二次质量调查(二模)数学试题 Word版含答案.doc》由用户(cbx170117)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    天津市和平区2020届高三第二次质量调查二模数学试题 Word版含答案 天津市 和平区 2020 届高三 第二次 质量 调查 数学试题 Word 答案 下载 _考试试卷_数学_高中
    资源描述:

    1、高三年级数学试卷 第 1 页(共 4 页) 高三年级数学试卷 第 2 页(共 4 页) 和平区和平区 2020 届高三第二次质量调查(二模)届高三第二次质量调查(二模) 数数 学学 温馨提示:本试卷包括第卷(选择题)和第卷(非选择题)两部分,共温馨提示:本试卷包括第卷(选择题)和第卷(非选择题)两部分,共 150 分。分。 考试时间考试时间 120 分钟。祝同学们考试顺利!分钟。祝同学们考试顺利! 第卷第卷 选择题选择题(共(共 45 分分) 注意事项注意事项: 1. 答第卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上。 2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

    2、如需改动,用橡皮 擦干净后,再选涂其他答案标号。答在试卷上的无效。 3. 本卷共 9 小题,每小题 5 分,共 45 分。 如果事件BA,互斥,那么 如果事件BA,相互独立,那么 )()()(BPAPBAP )()()(BPAPABP. 锥体的体积公式ShV 3 1 . 球体 3 3 4 RV 其中S表示锥体的底面积, 其中 R 为球的半径. h表示锥体的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1设复数2zai aR的共轭复数为z,且2zz ,则复数 2 z ai 在复平面内对 应点位于( ) A第一

    3、象限 B第二象限 C第三象限 D第四象限 2设Rx,则“ 3 1x ”是“ 11 | 22 x”的( ) A充分而不必要条件 B必要而不充分条件 C充要条件 D既不充分也不必要条件 3已知: 11 ln 4 a , 1 1 3 e b , 1 1 log 3 e c ,则 的大小关系为( ) Acab Bcb a Cbac Dabc 4已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为 1、2、3 元) 甲、 乙租车费用为 1 元的概率分别是 0.5、0.2,甲、乙租车费用为 2 元的概率分别是 0.2、 0.4,则甲、乙两人所扣租车费用相同的概率为( ) A0.18 B0.3 C0

    4、.24 D0.36 5在ABC中,角A、B、C的对边分别为a、b、c,若 1a , 2 3c , sinsin 3 bAaB ,则sinC ( ) A 3 7 B 21 7 C 21 12 D 57 19 6已知双曲线 22 2 :1(0) 3 xy Ca a 的右焦点为F,圆 222 xyc(c为双曲线的半 焦距)与双曲线C的一条渐近线交于,A B两点,且线段AF的中点M落在另一条渐 近线上,则双曲线C的方程是( ) A 22 1 43 xy B 2 2 1 33 y x C 22 1 23 xy D 2 2 1 3 y x 7 把函数 sin 2(0) 6 f xAxA 的图象向右平移 4

    5、 个单位长度, 得到函数 g x 的图象,若函数0g xmm是偶函数,则实数m的最小值是( ) A. 6 B. 5 6 C. 5 12 D. 12 8已知a、0b, 2 1b a ba ,则当 1 a b 取最小值时, 2 2 1 a b 的值为( ) A2 B2 2 C3 D.4 9已知函数 2 1 ,0 1 21,0 x x f xx xxx ,函数 g(x)f(1x)kxk 1 2 恰有三个不同 的零点,则 k 的取值范围是( ) A(2 2,0 9 2 B(2 2,0 9 2 cba, 高三年级数学试卷 第 3 页(共 4 页) 高三年级数学试卷 第 4 页(共 4 页) C(2 2,

    6、0 1 2 D(2 2,0 1 2 第卷第卷 非选择题(共非选择题(共 105 分)分) 注意事项注意事项: : 1. 用黑色水笔直接答在答题卡上,答在本试卷上的无效。 2. 本卷共 11 小题,共 105 分。 二、填空题:本大题共二、填空题:本大题共 6 小题小题,每小题每小题 5 分分,共共 30 分分.把答案填在答题卷上把答案填在答题卷上. 10已知全集为R,集合1,0,1,5M , 2 20Nx xx,则 () R MC N _ 11 6 2 1 2 x x 的展开式中, 2 1 x 项的系数为 . 12已知 ( )f x是定义在R上 偶函数,且在区间( , 0 上单调递增,若实数a

    7、满足 3 log 22 a ff,则a的取值范围是_. 13农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子” ,古称 “角黍” ,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱 国主义诗人屈原.如图, 平行四边形形状的纸片是由六个边长为 1 的正三角形构成的, 将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积 为 ;若该六面体内有一球,则该球体积的最大值为 14设抛物线 2 2(0)ypx p的焦点为 (1,0)F , 准线为l, 过焦点的直线交抛物线于A, B两点, 分别过A,B作l的垂线, 垂足为C,D, 若| 4|A FB F,

    8、则p ; . 15已知平行四边形ABCD的面积为9 3, 2 3 BAD,E为线段BC的中点则 ADDC_ ;若F 为线段DE上的一点,且 5 6 AFABAD,则AF的 最小值为_ 三、解答题:本大题共 5 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤. 16.( (本小题满分本小题满分 14 分分) ) 为了进一步激发同学们的学习热情,某班级建立了数学、英语两个学习兴趣小组,两 组的人数如下表所示: 组别 性别 数学 英语 男 5 1 女 3 3 现采用分层抽样的方法(层内采用简单随机抽样)从两组中共抽取3 名同学进行测试 ()求从数学组抽取的同学中至少有 1 名女同学的概率

    9、; () 记为抽取的 3 名同学中男同学的人 数,求随机变量的分布列和数学期望 17( (本小题满分本小题满分 14 分分) ) 如图,四边形ABCD为平行四边形, 90ABD ,EB 平面ABCD, ,3,1EBEF, 13BC ,且M是BD的中点. ()求证: 平面ADF; ()求二面角DAFB的大小; () 线段EB上是否存在点P, 使得直线CP与直线AF所成的角为30? 若存在, 求出BP的长;若不存在,请说明理由. 18( (本小题满分本小题满分 15 分分) ) 已知椭圆 22 22 1(0) xy ab ab 的离心率为 1 2 ,且过点 3 1 2 ,. F为椭圆的右焦 点,

    10、,A B为椭圆上关于原点对称的两点,连接,AF BF分别交椭圆于,C D两点. ()求椭圆的标准方程; ()若AFFC,求 BF FD 的值; ()设直线AB, CD的斜率分别为 1 k, 2 k,是否存在实数m,使得 21 kmk, 若存在,求出m的值;若不存在,请说明理由. 19( (本小题满分本小题满分 16 分分) ) 已知数列 n a是公差不为 0 的等差数列, 1 3 2 a ,数列 n b是等比数列,且 11 ba, 23 ba , 34 ba,数列 n b的前 n 项和为 n S ()求数列 n b的通项公式; ()设 ,5 8,6 n n n b n c a n , 求 n

    11、c的前 n 项和 n T; ()若 1 n n ASB S 对 * nN恒成立,求BA的最小值 20( (本小题满分本小题满分 16 分分) ) 已知函数 sin ,0, 2 xx f xeex x (e 为自然对数的底数) ()求函数 f x的值域; N CDF S ).( Nn EM 2,ABABEF 高三年级数学试卷 第 5 页(共 4 页) 高三年级数学试卷 第 6 页(共 4 页) ()若不等式 1 1 sinf xk xx对任意0, 2 x 恒成立,求实数 k 的取 值范围; ()证明: 2 1 13 1 22 x ex . - 4 - 和平区和平区 2019- -2020 学年度

    12、第二学期高三年级第二次质量调查学年度第二学期高三年级第二次质量调查 数学学科参考答案数学学科参考答案 一、选择题: (一、选择题: (45 分)分). . 1.A 2.B 3.A 4.B 5.B 6.D 7.C 8.C 9.D 二、填空题: (二、填空题: (30 分)分) 10. 0,1 11. 240 12. 0, 3 13. 2 6 ; 8 6 729 . 14. 2 ; 5 15.-9 ; 5 三、解答题:三、解答题: ( (16) () (本小题满分本小题满分 14 分分) ) 解:()两小组的总人数之比为 8421,共抽取 3 人, 所以数学组抽取 2 人,英语组抽取 1 人 从数

    13、学组抽取的同学中至少有 1 名女同学的情况有:1 名男同学、1 名女同学; 2 名女同学. 所以所求概率 14 9 2 8 2 3 1 5 1 3 C CCC P. 4 分 ()由题意可知,的所有可能取值为 0,1,2,3, 5 分 112 9 )0( 1 4 1 3 2 8 2 3 C C C C P 7 3 112 48 ) 1( 1 4 1 1 2 8 2 3 1 4 1 3 2 8 1 5 1 3 C C C C C C C CC P 112 45 )2( 1 4 1 3 2 8 2 5 1 4 1 1 2 8 1 5 1 3 C C C C C C C CC P 56 5 112 1

    14、0 ) 3( 1 4 1 1 2 8 2 5 C C C C P 所以 的分布列为: 0 9 1121 3 72 45 1123 5 56 3 2. 14 分 17.(.(本小题满分本小题满分 14 分分) ) 解:()证明:因为EB 平面ABD,ABBD,故以B为原点,建立如图所示的空间直 角坐标系Bxyz.由已知可得各点坐标为: (0,0,0), (0,2,0),(3,0,0)BAD ,(3, 2,0),(0,0, 3)CE 3 ,(0,1, 3),0,0 2 FM 3 ,0,3 ,(3, 2,0),(0, 1, 3) 2 EMADAF 2 分 设平面ADF的一个法向量是( , , )x

    15、y zn 0 1 2 3 P 9 112 3 7 45 112 5 56 E 12 分 10 分 8 分 6 分 11 分 - 5 - 由 0 0 n AD n AF 得 320 30 xy yz 令y=3,则(2,3, 3)n 又因为 3 ,0,3(2,3, 3)3030 2 EM n , 4 分 所以EM n,又EM 平面ADF, 所以EM平面ADF 6 分 ()由()可知平面ADF的一个法向量是(2,3, 3)n. 因为EB 平面ABD,所以EBBD 又因为ABBD,所以BD 平面EBAF. 故(3,0,0)BD 是平面EBAF的一个法向量. 8 分 所以 1 cos, 2| BD BD

    16、 BD n n n ,又二面角DAFB为锐角, 故二面角DAFB的大小为60 9 分 ()假设线段EB上存在点P,使得直线CP与直线AF所成的角为30 不妨设(0,0, )(03)Ptt ,则(3, 2,),(0, 1, 3)PCtAF10 分 所以 2 |23 | cos, | | 213 PC AFt PC AF PCAF t 11 分 由题意得 化简得4 335t 解得 35 0 4 3 t 13 分 因为03t ,所以无解 即在线段EB上不存在点P,使得直线CP与直线AF所成的角为30 14 分 1818( (本小题满分本小题满分 15 分分) ) 解:()设椭圆方程为 22 22 1

    17、(0) xy ab ab ,由题意知: 22 1 2 19 1 4 c a ab 解之得: 2 3 a b , 2 分 所以椭圆方程为: 22 1 43 xy 3 分 ()若AFFC,由椭圆对称性,知 3 1, 2 A ,所以 3 1, 2 B , 此时直线BF方程为3430xy, 5 分 2 3 132 32 2 t t - 6 - 由 22 3430, 1, 43 xy xy ,得 2 76130xx,解得 13 7 x (1x舍去) , 6 分 故 117 13 3 1 7 BF FD 7 分 ()若直线AF的斜率不存在.则直线AF的方程为: . 3 5 3 5 . 2 5 1 7 13

    18、 2 3 14 9 , 2 3 ) 1(1 2 3 2 3 . 14 9 , 7 13 , 2 3 , 1, 2 3 , 1, 2 3 , 1 12 21 满足题意,即存在 此时: mkk kk DCBA 若直线AF的斜率存在.设 00 ,)A xy(,则 00 ,Bxy, 直线AF的方程为 0 0 1 1 y yx x ,代入椭圆方程 22 1 43 xy 得: 10 分 因为 0 xx是该方程的一个解,所以C点的横坐标 0 0 85 52 C x x x , 又, cC C x y在直线 0 0 1 1 y yx x 上,所以 00 00 3 1 152 Cc yy yx xx , 同理,

    19、D点坐标为 0 0 85 (5 2 x x , 0 0 3 ) 52 y x , 13 分 所以 00 000 21 00 0 00 33 525255 8585 33 5252 yy xxy kk xx x xx , 即存在 5 3 m ,使得 21 5 3 kk 14 分 综合知存在 5 3 m 满足题意.15 分 1919( (本小题满分本小题满分 16 分分) ) 解:()设等差数列 n a的公差为d,等比数列 n b的公比为q, 则由题意可得 2 33 2 22 33 3 22 dq dq ,解得 1 2 3 8 q d 或 1 0 q d , 2 分 024158615 0 2 0

    20、 2 0 2 0 xxxyxx 1x 9 分 12 分 - 7 - 数列 n a是公差不为 0 的等差数列, 1 2 q , 数列 n b的通项公式 1 3 2 n n b ; 4 分 ()由()知 33153 (1)() 288 n n an , 5 分 当5n时, 12 31 1 22 1 1 12 1 2 n n nn Tbbb , 7 分 当6n时, 32 927 2 27 2 3 2 8 315 8 3 )5( 8) 2 1 (1 2 )(5( 8 )(8 2 5 6 5 765765 nn n -n aan T aaaTcccTT n nnn ()由()可知 31 1 22 1 1

    21、 12 1 2 n n n S , 11 分 令 1 n n t S S ,0 n S ,t随着 n S的增大而增大, 12 分 当n为奇数时, 1 1 2 n n S 在奇数集上单调递减, 35 1,0, 26 n tS , 当n为偶数时, 1 1 2 n n S 在偶数集上单调递增, 37 ,1 ,0 412 n St ,14 分 minmax 75 , 126 tt , 1 n n ASB S 对 * nN恒成立, 75 , , 12 6 A B , BA的最小值为 5717 61212 16 分 20. (. (本小题满分本小题满分 16 分分) ) 6, 32 927 2 27 2

    22、3 5, 2 1 1 2 nnn n T n n 9 分 10 分 - 8 - 解:()( )ee (sincos ) xx fxxxe (1 sincos ) x xxe 12(sin() 4 x x 2 2e sin() 42 x x 2 分 2 , 0 x, 3 , 444 x , 2 sin() 42 x , 所以( )0fx,故函数( )f x在0, 2 上单调递减, 故 max )(xf 00 (0)ee sin01f; min )(xf 22 ()ee sin0 22 f , 所以函数( )f x的值域为0,1. 5 分 ()原不等式可化为e (1 sin )(1)(1 sin

    23、) x xk xx.(*), 因为1 sin0x恒成立,故(*)式可化为e(1) x k x. 6 分 令( )exg xkxk,则( )exg xk 当0k 时,( )e0 x g xk,所以函数( )g x在0, 2 上单调递增, 故( )(0)10g xgk ,所以10k ; 7 分 当0k 时,令( )e0 x g xk,得lnxk, 当(0,ln )xk时,( )e0 x g xk ;当 (ln ,)xk时,( )e0 x g xk . i)当ln, 2 k 即 2 0ek 时, 函数 min ( )(ln )2ln(2ln )0g xgkkkkkk , 9 分 ii)当ln, 2

    24、k 即 2 ek 时,函数( )g x在0, 2 上单调递减, 2 min ( )()e0 22 g xgkk ,解得 2 2 e e 1 2 k 综上, 2 e 1 1 2 k . 11 分 ()令 12 13 ( )e()1, 22 x h xx 则 1 3 ( )e 2 x h xx . 12 分 由 11 24 133 ( )e10,( )e0 244 hh , 故存在 0 1 3 ( , ) 2 4 x ,使得 0 ()0h x即 0 1 0 3 e 2 x x . 且当 0 (,)xx 时,( )0h x;当 0 (,)xx时,( )0h x. - 9 - 故当 0 xx时,函数( )h x有极小值,且是唯一的极小值, 14 分 故函数 0 12 min00 13 ( )()e()1 22 x h xh xx 222 0000 313133153 ()()1() 1() 222222222 xxxx , 因为 0 1 3 ( , ) 2 4 x ,所以 22 0 1531 3531 ()()0 2222 42232 x , 故 12 13 ( )e()10, 22 x h xx 所以 12 13 e()1 22 x x 16 分

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:天津市和平区2020届高三第二次质量调查(二模)数学试题 Word版含答案.doc
    链接地址:https://www.163wenku.com/p-566445.html
    cbx170117
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库