书签 分享 收藏 举报 版权申诉 / 57
上传文档赚钱

类型高中数学必修+选修知识点归纳(新课标人教B版)(DOC 57页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5655789
  • 上传时间:2023-04-29
  • 格式:DOC
  • 页数:57
  • 大小:5.73MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学必修+选修知识点归纳(新课标人教B版)(DOC 57页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学必修+选修知识点归纳新课标人教B版DOC 57页 高中数学 必修 选修 知识点 归纳 新课 标人教 DOC 57 下载 _人教B版_数学_高中
    资源描述:

    1、高中数学必修+选修知识点总结(新课标人教B版)复习寄语:纸上得来终觉浅绝知此事要躬行引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。必修5:解三角形、数列、不等式。以上是每一个高中学生所必须学习的。上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技

    2、巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。选修课程有4个系列:系列1:由2个模块组成。选修11:常用逻辑用语、圆锥曲线与方程、导数及其应用。选修12:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。选修21:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。选修22:导数及其应用,推理与证明、数系的扩充与复数选修23:计数原理、随机变量及其分布列,统计案例。系列3:由6个专题组成。选修31:数学史选讲。选修32:信息安全与密码。选修33:球面上的几何。选修34:对称与群。选修35:欧拉公式与闭曲面分类。选修36:三等分角与数域扩充。系列4

    3、:由10个专题组成。选修41:几何证明选讲。选修42:矩阵与变换。选修43:数列与差分。选修44:坐标系与参数方程。选修45:不等式选讲。选修46:初等数论初步。选修47:优选法与试验设计初步。选修48:统筹法与图论初步。选修49:风险与决策。选修410:开关电路与布尔代数。2重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用数列:数列的有关概念、等差数列、等比数列

    4、、数列求和、数列的应用三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用平面向量:有关概念与初等运算、坐标运算、数量积及其应用不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量排列、组合和概率:排列、组合应用题、二项式定理及其应用概率与统计:概率、分布列

    5、、期望、方差、抽样、正态分布导数:导数的概念、求导、导数的应用复数:复数的概念与运算复习寄语 11引言 23目录 44第一部分 集 合 与 简 易 逻 辑58第二部分 映射、函数、导数、定积分与微积分922第三部分 三 角 函 数 与 平 面 向 量2335第四部分 数 列 3643第五部分 不 等 式4452第六部分 立 体 几 何 与 空 间 向 量5363第七部分 解 析 几 何 6473第八部分 排列、组合、二项式定理、推理与证明7479第九部分 概 率 与 统 计8086第十部分 复 数 8789第十一部分 算 法 9093第十二部分 几何证明选讲、极坐标与参数方程9498寄语高三

    6、99100第一部分 集 合 与 简 易 逻 辑必修1:集合1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。2、 只要构成两个集合的元素是一样的,就称这两个集合相等。3、 常见集合:正整数集合:或,整数集合:,有理数集合:,实数集合:.4、集合的表示方法:列举法、描述法.1.1.3、集合间的基本运算运算类型交 集并 集补 集定 义由所有属于A且属于B的元素所组成的集合,叫做的交集记作(读作A交B),即,且由所有属于集合A或属于集合B的元素所组成的集合,叫做的并集记作:(读作A并B),即 =,或)设S是一个集合,A是S的一个子集,由S

    7、中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作, 即韦恩图示SA性 质 A=A()()= ()()()= ()A()A()=1.1.2、集合间的基本关系1、 一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作.2、 如果集合,但存在元素,且,则称集合A是集合B的真子集.记作:.3、 把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、 如果集合A中含有n个元素,则集合A有个子集,个真子集.必修11:常用逻辑用语1、命题:可以判断真假的语句叫命题;逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简

    8、单命题:不含逻辑联结词的命题;复合命题:由简单命题与逻辑联结词构成的命题.常用小写的拉丁字母,表示命题.2、四种命题及其相互关系四种命题的真假性之间的关系:、两个命题互为逆否命题,它们有相同的真假性;、两个命题为互逆命题或互否命题,它们的真假性没有关系3、充分条件、必要条件与充要条件、一般地,如果已知,那么就说:是的充分条件,是的必要条件;若,则是的充分必要条件,简称充要条件、充分条件,必要条件与充要条件主要用来区分命题的条件与结论之间的关系:、从逻辑推理关系上看:若,则是充分条件,是的必要条件;若,但,则是充分而不必要条件;若,但,则是必要而不充分条件;若且,则是的充要条件;若且,则是的既不

    9、充分也不必要条件.、从集合与集合之间的关系上看:已知满足条件,满足条件:若,则是充分条件;若,则是必要条件;若,则是充分而不必要条件;若,则是必要而不充分条件;若,则是的充要条件;若且,则是的既不充分也不必要条件.4、复合命题复合命题有三种形式:或();且();非().复合命题的真假判断“或”形式复合命题的真假判断方法:一真必真;“且”形式复合命题的真假判断方法:一假必假;“非”形式复合命题的真假判断方法:真假相对.5、全称量词与存在量词全称量词与全称命题短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.含有全称量词的命题,叫做全称命题.存在量词与特称命题短语“存在一个”“

    10、至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.含有存在量词的命题,叫做特称命题.全称命题与特称命题的符号表示及否定全称命题:,它的否定:全称命题的否定是特称命题特称命题:,它的否定:特称命题的否定是全称命题.第二部分 映射、函数、导数、定积分与微积分必修1:函数1.2.1、函数的概念1、 设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.1.2.2、函数的表示

    11、法1、 函数的三种表示方法:解析法、图象法、列表法.1.3.1、单调性与最大(小)值1、注意函数单调性的证明方法:(1)定义法:设那么上是增函数;上是减函数.步骤:取值作差变形定号判断格式:解:设且,则:= (2)导数法:设函数在某个区间内可导,若,则为增函数;若,则为减函数;专题:如何解抽象函数问题?(赋值法、结构变换法) (对于这种抽象函数的题目,其实简单得都可以直接用死记了1、代,2、令0或1来求出f(0)或f(1)3、求奇偶性,令x;求单调性:令1 几类常见的抽象函数 1. 正比例函数型的抽象函数f(x)(k0) f(xy)f(x)f(y)2. 幂函数型的抽象函数f(x) f() f(

    12、x)f(y); f()3. 指数函数型的抽象函数f(x)f(xy)f(x)f(y); f(xy)4. 对数函数型的抽象函数f(x)(a0且a1)f(xy)f(x)f(y); f() f(x)f(y)5. 三角函数型的抽象函数f(x) f(xy)f(x) f(xy)1.3.2、奇偶性1、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数. 偶函数图象关于轴对称.2、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数. 奇函数图象关于原点对称.周期性:周期函数定义:对于函数 ,如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有 ,那么函数就叫做周期函数

    13、,非零常数T叫做这个函数的周期.利用它的单调性求最值与利用均值不等式求最值的区别是什么?(均值不等式一定要注意等号成立的条件)必修1:基本初等函数()2.1.1、指数与指数幂的运算1、 一般地,如果,那么叫做 的次方根。其中.2、 当为奇数时,;当为偶数时,.3、 我们规定: ; ;4、 运算性质:;.2.1.2、指数函数及其性质1、记住图象:2、性质:a10a1图像1ox(0,1)y (1a)x1o(0,1)y (0a0性质图像恒过(0,1),即0时,1;非奇非偶函数在R上是增函数,当x0时,0y0时,y1在R上是减函数, 当x1;当x0时,0y10a1图像ox(1,0)y (1a)xoy

    14、(0a0x0值域R性质图像恒过(1,0),即1时,0;非奇非偶函数在R上是增函数,当0x1时, y1时,y0在R上是减函数, 当0x0;当x1时, y0a0二次函数y2c(a、b、c为常数,a0)性质抛物线对称轴是x,顶点是抛物线开口向上,且向上无限伸展抛物线开口向下,且向下无限伸展在区间上是减函数,在区间上是增函数在区间上是增函数,在区间上是减函数顶点为最低点,当x时,y有最小值,y最小顶点为最高点,当x时,y有最大值,y最大 指数 对数2.3、幂函数1、几种幂函数的图象:2、幂函数的性质23定义域RRR0)(-,0)(0)值域R0)R0)(-,0)(0)奇偶性奇偶奇非奇非偶奇单调性增 (-

    15、,0)减,(0)增增增 (-,0)减,(0)减定点(0,0)(1,1)(1,1)3、形如f(x)=(其中mZ)的幂函数的性质(1)当n为偶数时,f(x)为偶函数,图象关于y轴对称.(2)当都为奇数时,f(x)为奇函数,图象关于原点对称.(3)当m为偶数且n为奇数时,f(x)是非奇非偶函数,图象只在第一象限内 .4、二次函数的解析式(1)一般式:f(x)2c(a0);对称轴为x,顶点为。(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为:f(x)a(xh)2k(a0);(3)双根式:若相应一元二次方程的两根为,则其解析式为f(x)a(xx1)(xx2)(a0)对称轴为。6.二次函数的图

    16、像必修1:第三章:函数的应用3.1.1、方程的根与函数的零点1、一般地,如果函数(x)在实数a处的值为零,即f(a)=0,则a叫做这个函数的零点.2、几个等价关系方程有实根函数的图象与轴有交点函数有零点.3、零点存在性定理:如果函数在区间 上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点,即存在,使得,这个也就是方程的根.3.1.2、用二分法求方程的近似解4、用二分法求函数f(x)零点近似值的步骤 第一步,确定区间a,b,验证?,给定精确度; 第二步,求区间(a,b)的中点x1; 第三步,计算:若,则x1就是函数的零点;若 ,则令1(此时零点x0(1);若,则令1(此时零点x0(x

    17、1);第四步,判断是否达到精确度:即若,则得到零点近似值a(或b);否则重复第二、三、四步. 3.2.1、几类不同增长的函数模型3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修11:导数及应用1、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.2、几种常见函数的导数; ; ; ; ; ; 3、导数的运算法则(1). (2). (3).4、复合函数求导法则复合函数的导数和函数的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.解题步骤:分层层层求导作积还原.5、函数的极值 (1)极值定义:极值是在附近

    18、所有的点,都有,则是函数的极大值; 极值是在附近所有的点,都有,则是函数的极小值.(2)判别方法:如果在附近的左侧0,右侧0,那么是极大值;如果在附近的左侧0,右侧0,那么是极小值.6、求函数的最值 (1)求在内的极值(极大或者极小值)(2)将的各极值点与比较,其中最大的一个为最大值,最小的一个为极小值。注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较(整体性质)。选修2-2:定积分(理科)(1922)1、定积分的概念如果函数在区间上连续,用分点将区间等分成个小区间,在每个小区间上任取一点,作和式,当时,上述和式无限接近某个常数,这个常数叫做函数在区间上的定积分

    19、.记作,即,这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式.说明:(1)定积分的值是一个常数,可正、可负、可为零;(2)用定义求定积分的四个基本步骤:分割;近似代替;求和;取极限.2、微积分基本定理(牛顿-莱布尼兹公式)如果,且在上可积,则,【其中叫做的一个原函数,因为】3、常用定积分公式(为常数)4、定积分的性质(k为常数);(其中;利用函数的奇偶性求定积分:若是上的奇函数,则;若是上的偶函数,则.5、定积分的几何意义定积分表示在区间上的曲线与直线、以及轴所围成的平面图形(曲边梯形)的面积的代数和,即.(在x轴上方的面积取正号,在x轴下方的面

    20、积取负号)6、求曲边梯形面积的方法与步骤画出草图,在直角坐标系中画出曲线或直线的大致图像;借助图形确定出被积函数,求出交点坐标,确定积分的上、下限;写出定积分表达式;求出曲边梯形的面积和,即各积分的绝对值的和.7、定积分的简单应用定积分在几何中的应用:几种常见的曲边梯形面积的计算方法:(1)型区域:由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(1);图(1) 图(2)由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(2);由一条曲线【当时,当时,】与直线以及轴所围成的曲边梯形的面积: (如图(3);图(3) 图(4)由两条曲线(与直线所围成的曲边梯形的面积:(如图(4)(2)型区域

    21、:由一条曲线与直线以及轴所围成的曲边梯形的面积,可由得,然后利用求出(如图(5);图(5) 图(6)由一条曲线与直线以及轴所围成的曲边梯形的面积,可由先求出,然后利用求出(如图(6);由两条曲线与直线所围成的曲边梯形的面积,可由先分别求出,然后利用求出(如图(7);图(7)定积分在物理中的应用:变速直线运动的路程作变速直线运动的物体所经过的路程,等于其速度函数在时间区间上的定积分,即变力作功物体在变力的作用下做直线运动,并且物体沿着与相同的方向从移动到 ,那么变力所作的功.第三部分 三 角 函 数 与 平 面 向 量必修4:三角函数1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、

    22、与角终边相同的角的集合:.1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .3、弧长公式:.4、扇形面积公式:.1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:2、 设点为角终边上任意一点,那么:(设) ,3、 ,在四个象限的符号和三角函数线的画法.正弦线:; 余弦线:; 正切线:5、 特殊角0,30,45,60,90,180,270等的三角函数值.01.2.2、同角三角函数的基本关系式1、 平方关系:.2、 商数关系:.3、 倒数关系:1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)1、 诱导公式一: 2、 诱导公式

    23、二:(其中:) 3、诱导公式三: 4、诱导公式四: 5、诱导公式五: 6、诱导公式六: 1.4.1、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: 4、图表归纳:正弦、余弦、正切函数的图像及其性质图象定义域值域-1,1-1,1最值无周期性奇偶性奇偶奇单调性在上单调递增在上单调递减在上单调递增在上单调递减在上单调递增对称性对称轴方程:对称中心对称轴方程:对称中心无对称轴对称中心1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、

    24、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.1.5、函数的图象1、对于函数:有:振幅A,周期,初相,相位,频率.2、能够讲出函数的图象与的图象之间的平移伸缩变换关系.先平移后伸缩: 平移个单位 平移个单位先伸缩后平移: 平移个单位平移个单位3、三角函数的周期,对称轴和对称中心函数,xR及函数,xR(A,为常数,且A0)的周期;函数,(A,为常数,且A0)的周期.对于和来说,对称中心与零点相联系,对称轴与最值点联系.求函数图像的对称轴与对称中心,只需令与解出即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式利用图像特征:,.要根据周期来求,

    25、要用图像的关键点(“五点法”画图)来求.1.6、三角函数模型的简单应用1、 要求熟悉课本例题.必修4:第三章:三角恒等变换3.1.1、两角差的余弦公式记住15、75的三角函数值:3.1.2、两角和与差的正弦、余弦、正切公式1、2、3、4、5、.6、.3.1.3、二倍角的正弦、余弦、正切公式1、, 变形: .2、.变形如下: 升幂公式: 降幂公式:3、. 4、3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式 (其中辅助角所在象限由点的象限决定, ).必修5:第一章:解三角形1、正弦定理:.(其中为外接圆的半径)用途:已知三角形两角和任一边,求其它元素; 已知三角形两边和其中一

    26、边的对角,求其它元素。2、余弦定理: 用途:已知三角形两边及其夹角,求其它元素;已知三角形三边,求其它元素。做题中两个定理经常结合使用.3、三角形面积公式:4、三角形内角和定理: 在中,有.5、一个常用结论: 在中,(大边对大角)若特别注意,在三角函数中, 不成立。第二章:平面向量2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度等于1个单位的向量叫

    27、做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2、.2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.2、 三角形减法法则和平行四边形减法法则.2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规定如下: ,当时, 的方向与的方向相同;当时, 的方向与的方向相反.2、 平面向量共线定理:向量与

    28、 共线,当且仅当有唯一一个实数,使.2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数,使.2.3.2、平面向量的正交分解及坐标表示1、 .2.3.3、平面向量的坐标运算1、 设,则: ,.2、 设,则: .2.3.4、平面向量共线的坐标表示1、设,则线段中点坐标为,的重心坐标为.2.4.1、平面向量数量积的物理背景及其含义1、 .(在求的夹角时要注意的起点相同)2、 在方向上的投影为:.3、 .4、 .5、 .2.4.2、平面向量数量积的坐标表示、模、夹角1、 设,则:2、 设,则:.两向量的夹角公式 4、点的平

    29、移公式(理科部分) 平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为, 则 函数的图像按向量平移后的图像的解析式为2.5.1、平面几何中的向量方法2.5.2、向量在物理中的应用举例第四部分 数 列必修5:第二章:数列1、数列中与之间的关系:注意通项能否合并。2、等差数列:定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即 ,(n2,nN),那么这个数列就叫做等差数列。等差中项:若三数成等差数列通项公式: 或 前项和公式:常用性质:若,则;下标为等差数列的项,仍组成等差数列;数列(为常数)仍为等差数列;若、是等差数列,则、 (、是非零常数)、,也成等差数列。单调

    30、性:的公差为,则:)为递增数列;)为递减数列;)为常数列;数列为等差数列(是常数)若等差数列的前项和,则、 是等差数列。3、等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。等比中项:若三数成等比数列(同号)。反之不一定成立。通项公式:前项和公式:常用性质若,则;为等比数列,公比为(下标成等差数列,则对应的项成等比数列)数列(为不等于零的常数)仍是公比为的等比数列;正项等比数列;则是公差为的等差数列;若是等比数列,则 是等比数列,公比依次是单调性:为递增数列;为递减数列;为常数列;为摆动数列;既是等差数列又是等比数列的数列是常数列。若等比数

    31、列的前项和,则、 是等比数列.4、非等差、等比数列通项公式的求法类型 观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。类型 公式法:若已知数列的前项和与的关系,求数列的通项可用公式 构造两式作差求解。用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即和合为一个表达,(要先分和两种情况分别进行运算,然后验证能否统一)。类型 累加法:形如型的递推数列(其中是关于的函数)可构造: 将上述个式子两边分别相加,可得:若是关于的一次函数,累加后可转化为等差数列求和; 若是关于的指数函数,累加后可转化为等比数

    32、列求和;若是关于的二次函数,累加后可分组求和; 若是关于的分式函数,累加后可裂项求和. 类型 累乘法:形如型的递推数列(其中是关于的函数)可构造: 将上述个式子两边分别相乘,可得:有时若不能直接用,可变形成这种形式,然后用这种方法求解。类型 构造数列法:形如(其中均为常数且)型的递推式: (1)若时,数列为等差数列; (2)若时,数列为等比数列;(3)若且时,数列为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种:法一:设,展开移项整理得,与题设比较系数(待定系数法)得,即构成以为首项,以为公比的等比数列.再利用等比数列的通项公式求出的通项整理可得法二:由得两式相减并整理得

    33、即构成以为首项,以为公比的等比数列.求出的通项再转化为类型(累加法)便可求出形如型的递推式:当为一次函数类型(即等差数列)时:法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得法二:当的公差为时,由递推式得:,两式相减得:,令得:转化为类型求出 ,再用类型(累加法)便可求出当为指数函数类型(即等比数列)时:法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得法二:当的公比为时,由递推式得:,两边同时乘以得,由两式相减得,即,在转化为类型便可求出法三:递推公式为(其中p,q均

    34、为常数)或(其中p,q, r均为常数)时,要先在原递推公式两边同时除以,得:,引入辅助数列(其中),得:再应用类型的方法解决。当为任意数列时,可用通法: 在两边同时除以可得到,令,则,在转化为类型(累加法),求出之后得.类型 对数变换法:形如型的递推式:在原递推式两边取对数得,令得:,化归为型,求出之后得(注意:底数不一定要取10,可根据题意选择)。类型 倒数变换法:形如(为常数且)的递推式:两边同除于,转化为形式,化归为型求出的表达式,再求;还有形如的递推式,也可采用取倒数方法转化成形式,化归为型求出的表达式,再求.类型 形如型的递推式:用待定系数法,化为特殊数列的形式求解。方法为:设,比较

    35、系数得,可解得,于是是公比为的等比数列,这样就化归为型。总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式5、非等差、等比数列前项和公式的求法错位相减法若数列为等差数列,数列为等比数列,则数列的求和就要采用此法.将数列的每一项分别乘以的公比,然后在错位相减,进而可得到数列的前项和.此法是在推导等比数列的前项和公式时所用的方法.裂项相消法一般地,当数列的通项 时,往往可将变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项:设,通分整理后与原式相比较,根据对应项系数相等得,从而可得常见的拆项公式有: 分组法求和有一

    36、类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:找通向项公式由通项公式确定如何分组.倒序相加法如果一个数列,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。特征:记住常见数列的前项和:第五部分 不 等 式必修5:第三章:不等式3.1、不等关系与不等式1、不等式的基本性质(对称性)(传递性)(可加性)(同向可加性)(异向可减性)(可积性)(同向正数可乘性)(异向正数可除性)(平方法则)(开方法则)(倒数法则)2、几个重要不等式,(当且仅当时取号). 变形公式:(基本不等式) ,(当且仅当时取到等号).变形公式: 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.(三个正数的算术几何平均不等式)(当且仅当时取到等号). (选讲)(当且仅当时取到等号).(当且仅当时取到等

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学必修+选修知识点归纳(新课标人教B版)(DOC 57页).doc
    链接地址:https://www.163wenku.com/p-5655789.html
    2023DOC
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库