高中数学知识点课本回归(DOC 22页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学知识点课本回归(DOC 22页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学知识点课本回归DOC 22页 高中数学 知识点 课本 回归 DOC 22 下载 _其他_数学_高中
- 资源描述:
-
1、高中数学课本回归(1)第一章、集合一、基础知识(理解去记)定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。集合分有限集和无限集两种。集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如1,2,3;描述法:将集合中的元素的属性写在大括号内表示集合的方法。例如有理数,分别表示有理数集和正实数集。定义
2、2 子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。便于理解:包含两个意思:A与B相等 、A是B的真子集定义3 交集,定义4 并集,定义5 补集,若称为A在I中的补集。定义6 集合记作开区间,集合记作闭区间,R记作定义7 空集是任何集合的子集,是任何非空集合的真子集。补充知识点 对集合中元素三大性质的理解(1)确定性集合中的元素,必须是确定的对于集合和元素,要么,要么,二者必居其一比如:“所有大于100的
3、数”组成一个集合,集合中的元素是确定的而“较大的整数”就不能构成一个集合,因为它的对象是不确定的再如,“较大的树”、“较高的人”等都不能构成集合(2)互异性对于一个给定的集合,集合中的元素一定是不同的任何两个相同的对象在同一集合中时,只能算作这个集合中的一个元素如:由,组成一个集合,则的取值不能是或1(3)无序性集合中的元素的次序无先后之分如:由组成一个集合,也可以写成组成一个集合,它们都表示同一个集合帮你总结:学习集合表示方法时应注意的问题(1)注意与的区别是集合的一个元素,而是含有一个元素的集合,二者的关系是(2)注意与的区别是不含任何元素的集合,而是含有元素的集合(3)在用列举法表示集合
4、时,一定不能犯用实数集或来表示实数集这一类错误,因为这里“大括号”已包含了“所有”的意思用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,它应具备哪些特征性质,从而准确地理解集合的意义例如:集合中的元素是,这个集合表示二元方程的解集,或者理解为曲线上的点组成的点集;集合中的元素是,这个集合表示函数中自变量的取值范围;集合中的元素是,这个集合表示函数中函数值的取值范围;集合中的元素只有一个(方程),它是用列举法表示的单元素集合(4)常见题型方法:当集合中有n个元素时,有2n个子集,有2n-1个真子集,有2n-2个非空真子集。集合穿针 转化引线(最新)一、集合与常用逻辑用语3.若,则是
5、的()(A)充分条件(B)必要条件(C)充要条件(D)既不充分又不必要条件4.若,则“”是“方程表示双曲线”的()(A)充分条件(B)必要条件(C)充要条件(D)既不充分又不必要条件二、集合与函数5.已知集合,那么等于()(A)(0,2),(1,1)(B)(0,2),(1,1)(C)1,2 (D)第二章、函数一、基础知识(理解去记)定义1 映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f: AB为一个映射。定义2 函数,映射f: AB中,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若xA, yB,且f(x)=y(即x对应
6、B中的y),则y叫做x的象,x叫y的原象。集合f(x)|xA叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为x|x0,xR.定义4 函数的性质。(1)单调性:设函数f(x)在区间I上满足对任意的x1, x2I并且x1 x2,总有f(x1)f(x2),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的xD,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的xD,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关
7、于原点对称,偶函数的图象关于y轴对称。(3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。定义5 如果实数ab,则数集x|axb, xR叫做开区间,记作(a,b),集合x|axb,xR记作闭区间a,b,集合x|axb记作半开半闭区间(a,b,集合x|axa记作开区间(a, +),集合x|xa记作半开半闭区间(-,a.定义6 函数的图象,点集(x,y)|y=f(x), xD称为函数y=f(x)的图象,其中D为f(x
8、)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)与函数y=f(-x)的图象关于y轴对称;(5)与函数y=-f(-x)的图象关于原点成中心对称;(6)与函数y=f-1(x)的图象关于直线y=x对称;(7)与函数y=-f(x)的图象关于x轴对称。一、基础知识(初中知识 必会)1二次函数:当0时,称为关于x的二次函数,其对称轴为直线,另外配方可得。2二次函数的性质:当a0时,f(x)的图象开口向上,在区间(
9、-,x0上随自变量x增大函数值减小(简称递减),在x0, -)上随自变量增大函数值增大(简称递增)。当a0时,方程f(x)=0即ax2+bx+c=0和不等式ax2+bx+c0及ax2+bx+c0时,方程有两个不等实根,设x1,x2(x1x2),不等式和不等式的解集分别是x|xx2和x|x1xx2,二次函数f(x)图象与x轴有两个不同的交点,f(x)还可写成f(x)=a(x-x1)(x-x2).2)当=0时,方程有两个相等的实根x1=x2=x0=,不等式和不等式的解集分别是x|x和空集,f(x)的图象与x轴有唯一公共点。3)当0时,方程无解,不等式和不等式的解集分别是R和.f(x)图象与x轴无公
10、共点。当a0,当x=x0时,f(x)取最小值f(x0)=,若a0),当x0m, n时,f(x)在m, n上的最小值为f(x0); 当x0n时,f(x)在m, n上的最小值为f(n)(以上结论由二次函数图象即可得出)。定义1 能判断真假的语句叫命题,如“35”是命题,“萝卜好大”不是命题。不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题。一定注意: “p或q”复合命题只有当p,q同为假命题时为假,否则为真命题;“p且q”复合命题只有当p,q同时为真命题时为真,否则为假命题;p与“非p”即“p”恰好一真一假。定义2 原命题:若p则q(p为条件,q为
11、结论);逆命题:若q则p;否命题:若非p则q;逆否命题:若非q则非p。一定注意: 原命题与其逆否命题同真假。一个命题的逆命题和否命题同真假。一定注意: 反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题。定义3 如果命题“若p则q”为真,则记为pq否则记作pq.在命题“若p则q”中,如果已知pq,则p是q的充分条件;如果qp,则称p是q的必要条件;如果pq但q不p,则称p是q的充分非必要条件;如果p不q但pq,则p称为q的必要非充分条件;若pq且qp,则p是q的充要条件。15常用结论。定理2 若a,bR, 则a2+b22ab;若x,yR+,则x+y第三章、基本初等函数一、基础知识(必
12、会)1指数函数及其性质:形如y=ax(a0, a1)的函数叫做指数函数,其定义域为R,值域为(0,+),当0a1时,y=ax为增函数,它的图象恒过定点(0,1)。2分数指数幂:。3对数函数及其性质:形如y=logax(a0, a1)的函数叫做对数函数,其定义域为(0,+),值域为R,图象过定点(1,0)。当0a1时,y=logax为增函数。4对数的性质(M0, N0);1) x=logaM(a0, a1);2)loga(MN)= loga M+ loga N;3)loga()= loga M- loga N; 4) 5)loga =loga M;6); 7) loga b=(a,b,c0, a
13、, c1).5. 函数的单调递增区间是和,单调递减区间为和。(请同学自己用定义证明)6连续函数的性质:若ab, f(x)在a, b上连续,且f(a)f(b)0,则Ax+By+C0表示的区域为l上方的部分,Ax+By+C0)。其圆心为,半径为。若点P(x0, y0)为圆上一点,则过点P的切线方程为 11.点与圆的位置关系点与圆的位置关系有三种若,则点在圆外;点在圆上;点在圆内.13.直线与圆的位置关系直线与圆的位置关系有三种:;.其中.14.两圆位置关系的判定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,;.15.圆的切线方程(1)已知圆若已知切点在圆上,则切线只有一条,其方程是当圆外时
展开阅读全文