圆知识点总结及对应测验(DOC 6页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《圆知识点总结及对应测验(DOC 6页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆知识点总结及对应测验DOC 6页 知识点 总结 对应 测验 DOC
- 资源描述:
-
1、 圆考点一、圆的相关概念 1、圆的定义 2、圆的几何表示 : 以点O为圆心的圆记作“O”,读作“圆O”考点二、弦、弧等与圆有关的定义 (1)弦 连接圆上任意两点的线段叫做弦。(如图中的AB)(2)直径 经过圆心的弦叫做直径。(如途中的CD)(3)半圆(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且
2、平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧考点四、圆的对称性 1、圆的轴对称性2、圆的中心对称性: 圆是以圆心为对称中心的中心对称图形。考点五、弧、弦、弦心距、圆心角之间的关系定理 1、圆心角:顶点在圆心的角叫做圆心角。2、弦心距:从圆心到弦的距离叫做弦心距。3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的
3、弦的弦心距相等。推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。考点六、圆周角定理及其推论 1、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。考点七、点和圆的位置关系 设O的半径是r,点P到圆心O的距离为d,则有:dr点P在O外。考点八、过三点的圆 1、过三点的圆:不在同一直线上的三个点确定
4、一个圆。2、三角形的外接圆:3、三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点 4、圆内接四边形性质(四点共圆的判定条件) 圆内接四边形对角互补。考点九、直线与圆的位置关系 直线和圆有三种位置关系,具体如下:如果O的半径为r,圆心O到直线l的距离为d,那么:直线l与O相交dr;考点十、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边是内接四边形 考点十一、切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线2、性质定理:切线垂直于
5、过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。考点十二、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 ;平分考点十三、圆幂定理1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径, 2、切割线定理:从圆外一点引圆的切线和割线,切线
展开阅读全文