最新北师大版八年级上册数学全册知识点大全(完美版)(DOC 12页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新北师大版八年级上册数学全册知识点大全(完美版)(DOC 12页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新北师大版八年级上册数学全册知识点大全完美版DOC 12页 最新 北师大 年级 上册 数学 知识点 大全 完美 DOC 12 下载 _八年级上册_北师大版(2024)_数学_初中
- 资源描述:
-
1、 数学(八年级上册)知识点总结(北师大版)第一章 勾股定理1、勾股定理-已知直角三角形,得边的关系直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理-由边的关系,判断直角三角形如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。3、勾股数:满足的三个正整数a,b,c,称为勾股数。常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)规律:(1)、短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。即当a为奇数且ab时,如果,那么a,b,c就是一组勾股数.如:(3,4,
2、5)(5,12,,13)(7,24,25)(9,40,41)(2)大于2的任意偶数,2n(n1)都可构成一组勾股数分别是: 如:(6,8,10)(8,15,17)(10,24,26)第二章 实数1. 无理数的引入。无理数的定义无限不循环小数。 一、实数的概念及分类 1、实数的分类 二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|0)。零
3、的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算. 注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .三、平方根、算数平方根和立方根 1平方根和算术平方根:(1)概念:如果,那么是的平方根,记作:;读作“正、负根号”,其中叫做的算术平方根,读作根号。(2)性质:当0时,0
4、; 当时,无意义; ; 。(区分、)性质:正数和零的算术平方根都只有一个,零的算术平方根是零。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。(3)开平方:求一个数a的平方根的运算,叫做开平方。注意 :的双重非负性:2立方根:(1)概念:若,那么是的立方根(或三次方根),记作:; (2)性质:; ; 性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:, 这说明三次根号内的负号可以移到根号外面。区分:平方根、立方根的性质根源:开平方是平方的逆运算;开立方是立方的逆运算。正数和负数的平方后为正,所以,只有非负数才可以开平方,因此一个非0正数
5、开平方后有2个;而任何数的立方后的符号与原数的符号一致,所以,任何数都可以开立方,一个数开立方后只有1个,符号与原数的符号也一致。四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。在数轴上,右边的点表示的数比左边的点表示的数大。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数, (3)求商比较法:设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。(5)平方法: 设 ,则 设 ,则 。 同号的有理数与无理数
6、、同号的无理数与无理数大小比较时常用平方法。如:比较 与;与(6)倒数法:设 ,则;设 ,则 规律:同号取倒(数)反向五、算术平方根有关计算(二次根式)1、含有二次根号“”; 被开方数必须是非负数,即:。六、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。第三章 位置的确定一、 在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴
7、,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当
8、时,(a,b)和(b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。(3)点P(x,y)到原点的距离等于(由勾股定理可得)三、坐标变化与图形变化的规律:坐标( x , y )的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为原来的 a倍 x a, y a 放大(缩小)为原来的 a倍 x ( -1)或 y ( -1) 关于 y 轴或 x 轴对称 x ( -1), y ( -1) 关于原点成中心对称 或 ,其中沿 x 轴()左(+)右或 y 轴(+)上()下平移 a个单位 , ,其中沿 x 轴()左(+)右平移 a个单位,再沿 y 轴(+)上()下平移 a个单第四章 一
9、次函数一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(偶次根式)(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象
10、法用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:、一次函
11、数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。、由于一次函数的图象是一条直线,所以一次函数的图象也称为直线。、由于两点确定一条直线,因此在画一次函数的图象时,只要描出:与轴的交点(令,求出),与轴的交点(令,求出),即( 两点即可,画正比例函数的图象时,只要描出点(0,0),(1,)即可。、的正负决定直线的倾斜方向,的大小决定直线的倾斜程度,即越大,直线与轴相交的锐角度数越大(直线陡),越小,直线与轴的相交的锐角度数越小(直线缓)。、的正负决定直线与轴交点的位置。当时,直线与轴的交于正半轴上。当时,直线与轴交于负半轴上。当时,直线经过原点,是正比例函数,正比例函
展开阅读全文