书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型新课标必修5数学基本不等式经典例题(含知识点和例题详细解析)(DOC 7页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5654370
  • 上传时间:2023-04-29
  • 格式:DOC
  • 页数:7
  • 大小:344.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《新课标必修5数学基本不等式经典例题(含知识点和例题详细解析)(DOC 7页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新课标必修5数学基本不等式经典例题含知识点和例题详细解析DOC 7页 新课 必修 数学 基本 不等式 经典 例题 知识点 详细 解析 DOC
    资源描述:

    1、基本不等式知识点:1. (1)若,则(2)若,则(当且仅当时取“=”)2. (1)若,则(2)若,则(当且仅当时取“=”)(3)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)4.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)5.若,则(当且仅当时取“=”)注意:(1) 当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实

    2、际问题方面有广泛的应用应用一:求最值例:求下列函数的值域(1)y3x 2 (2)yx解:(1)y3x 22 值域为,+)(2)当x0时,yx22;当x0时, yx= ( x)2=2值域为(,22,+)解题技巧技巧一:凑项例 已知,求函数的最大值。 解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑项,当且仅当,即时,上式等号成立,故当时,。技巧二:凑系数例: 当时,求的最大值。解析:由知,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。当,即x2时取等号 当x2时,的最大值为8。变式:设,求函数的最大值。

    3、解:当且仅当即时等号成立。技巧三: 分离技巧四:换元例:求的值域。解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x1)的项,再将其分离。当,即时,(当且仅当x1时取“”号)。解析二:本题看似无法运用均值不等式,可先换元,令t=x1,化简原式在分离求最值。当,即t=时,(当t=2即x1时取“”号)。技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数的单调性。例:求函数的值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。技巧六:整体代换多次连用最值定理求最值时,要注意取等号的条件的一

    4、致性,否则就会出错。例:已知,且,求的最小值。错解:,且, 故 。错因:解法中两次连用均值不等式,在等号成立条件是,在等号成立条件是即,取等号的条件的不一致,产生错误。因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。正解:,当且仅当时,上式等号成立,又,可得时, 。技巧七例:已知x,y为正实数,且x 21,求x的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab。同时还应化简中y2前面的系数为 , xx x下面将x,分别看成两个因式:x 即xx 技巧八:已知a,b为正实数,2baba30,求函数y的最小值.分析:这是一个二元函数的最

    5、值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。法一:a, abb由a0得,0b15令tb+1,1t16,ab2(t)34t28 ab18 y 当且仅当t4,即b3,a6时,等号成立。法二:由已知得:30aba2b a2b2 30ab2令u则u22u300, 5u33,ab18,y点评:本题考查不等式的应用、不等式的解法及运算能力;如何由已知不等式出发求得的范围,关键是寻找到之间的关

    6、系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围.技巧九、取平方例: 求函数的最大值。解析:注意到与的和为定值。又,所以当且仅当=,即时取等号。 故。应用二:利用均值不等式证明不等式例:已知a、b、c,且。求证:17、大熊座的明显标志就是我们熟悉的由七颗亮星组成的北斗七星,分析:不等式右边数字8,使我们联想到左边因式分别使用均值不等式可得三个“2”连乘,又,可由此变形入手。二、问答题:解:a、b、c,。同理,。上述三个不等式两边均为正,分别相乘,得。当且仅当时取等号。应用三:均值不等式与恒成立问题例:已知且,求使不等式恒成立的实数的取值范围。7、我们每个人应该怎样保护身边的环

    7、境?解:令,3、米饭里面的主要成分是淀粉。米饭淀粉遇到碘酒,颜色变成蓝色,这种蓝色物质是一种不同于米饭和淀粉的新物质。 。 ,11、月食:当地球转到月球和太阳的中间,太阳、地球、月球大致排成一条直线时,地球就会挡住太阳射向月球的光,这时在地球上的人就只能看到月球的一部分或全部看不到,于是就发生了月食。答:如水资源缺乏,全球气候变暖,生物品种咖快灭绝,地球臭氧层受到破坏,土地荒漠化等世界性的环境问题。应用四:均值定理在比较大小中的应用:7、对于生活中的一些废弃物,我们可以从垃圾中回收它们并重新加工利用。这样做不但能够减少垃圾的数量,而且能够节省大量的自然资源。例:若,则的大小关系是 .分析: 11、月食:当地球转到月球和太阳的中间,太阳、地球、月球大致排成一条直线时,地球就会挡住太阳射向月球的光,这时在地球上的人就只能看到月球的一部分或全部看不到,于是就发生了月食。(1、我们每天都要消耗食物和各种各样的生活用品,与此同时,也产生了许多垃圾。 RQP。5、月球在圆缺变化过程中出现的各种形状叫作月相。月相变化是由于月球公转而发生的。它其实是人们从地球上看到的月球被太阳照亮的部分。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:新课标必修5数学基本不等式经典例题(含知识点和例题详细解析)(DOC 7页).doc
    链接地址:https://www.163wenku.com/p-5654370.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库