华师大版八年级数学下函数及其图像知识点归纳(DOC 7页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《华师大版八年级数学下函数及其图像知识点归纳(DOC 7页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 华师大版八年级数学下函数及其图像知识点归纳DOC 7页 师大 八年 级数 函数 及其 图像 知识点 归纳 DOC 下载 _八年级下册_华师大版(2024)_数学_初中
- 资源描述:
-
1、 文件排版存档编号:UYTR-OUPT28-KBNTL98-UYNN208华师大版八年级数学下函数及其图像知识点归纳华师大版八年级数学下函数及其图像知识点归纳一变量与函数1 函数的定义:一般的,在某个变化过程中有两个变量x和y,对于x的每一个数值y都有唯一的值与之对应,我们说x叫做自变量,y叫做因变量,y叫做x的函数。2自变量的取值范围:(1)能够使函数有意义的自变量的取值全体。(2)确定函数自变量的取值范围要注意以下两点:一是使自变量所在的代数式有意义;二是使函数在实际问题中有实际意义。(3)不同函数关系式自变量取值范围的确定:函数关系式为整式时自变量的取值范围是全体实数。函数关系式为分式时
2、自变量的取值范围是使分母不为零的全体实数。函数关系式为二次根式时自变量的取值范围是使被开方数大于或等于零的全体实数。 3 函数值:当自变量取某一数值时对应的函数值。这里有三种类型的问题:(1)当已知自变量的值求函数值就是求代数式的值。(2)当已知函数值求自变量的值就是解方程。(3)当给定函数值的一个取值范围,欲求自变量的取值范围时实质上就是解不等式或不等式组。二平面直角坐标系:1各象限内点的坐标的特征:(1)点p(x,y)在第一象限x0,y0.(2)点p(x,y)在第二象限x0,y0.(3)点p(x,y)在第三象限x0,y0(4)点p(x,y)在第四象限x0,y0.2 坐标轴上的点的坐标的特征
3、:(1)点p(x,y)在x轴上x为任意实数,y=0(2)点p(x,y)在y轴上x=0,y为任意实数3 关于x轴,y轴,原点对称的点的坐标的特征:(1)点p(x,y)关于x轴对称的点的坐标为(x,-y).(2)点p(x,y)关于y轴对称的点的坐标为(-x,y).(3)点p(x,y)关于原点对称的点的坐标为(-x,-y)4 两条坐标轴夹角平分在线的点的坐标的特征:(1)点p(x,y)在第一、三象限夹角平分在线x=y.(2)点p(x,y)在第二,四象限夹角平分在线x+y=05与坐标轴平行的直线上的点的坐标的特征:(1)位于平行于x轴的直线上的所有点的纵坐标相同。(2)位于平行于y轴的直线上的所有点的
4、横坐标相同。6点到坐标轴及原点的距离:(1)点p(x,y)到轴的距离为 y.(2)点p(x,y)到y轴的距离为x.22(3)点p(x,y)到原点的距离为xy(4)同在x轴上的两点A(x1,0)与B(x2,0)之间的距离为AB=|x1-x2|(5)同在y轴上的两点C(0,y1)与D(0,y2)之间的距离为CD=|y1-y2|三函数的图像函数图像上的点与其解析式的关系1函数图像上任意一点px,y中的x、y满足函数关系式,满足函数关系式的一对对应值x,y都在函数的图像上。2判断点px,y是否在函数图像上的方法,将这个点的坐标 x,y代入函数关系式,如果满足函数关系式,那么这个点就在函数的图像上,如果
5、不满足函数关系式,那么,这个点就不在函数的图像上。四一次函数(一) 一次函数的定义1定义:含有自变量的式子为一次整式,即形如式子ykx+b(其中k和b为常数,k0)叫做一次函数。 正比例函数:在一次函数y=kx+b中如果b=0即变为y=kx(其中k0),这样的函数叫做正比例函数。2注意:(1)由一次函数和正比例函数的定义可知; 函数是一次函数解析式为ykx+b的形式。 函数是正比例函数解析式为y=kx的形式。(2)一次函数解析式y=kx+b的结构特征: k0 x的次数是1 常数b为任意实数(3)正比例函数解析式y=kx的结构特征 k0 x的次数是1 常数b=03说明:在y=kx+b中若k=0则
6、y=bb为常数这样的函数叫做常数函数,它不是一次函数。4正比例函数与一次函数的关系:正比例函数是一次函数的特例,一次函数包含正比例函数。第2/6页一次函数y=kx+b,当b=0时为正比例函数一次函数y=kx+b,当b0时一般的一次函数(二) 一次函数的图像1一次函数图像的形状:一次函数y=kx+b的图像是一条直线,通常称为直线y=kx+b正比例函数y=kx的图像也是一条直线,称为直线y=kx2一次函数图像的主要特点:一次函数y=kx+b的图像经过点0,b的直线,正比例函数y=kx+b的图像是经过原点0,0的直线 注意:点0,b是直线y=kx+b与y轴的交点。 当b0时,此时交点在y轴的正半轴上
7、, 当b0时,此时交点在y轴的负半轴上, 当b=0时,此时交点在原点,这时的一次函数就是正比例函数。3一次函数图像的画法:根据两点能画一条直线并且只能画一条直线,即两点确定一条直线,所以画一次函数的图像时,只要先描出两点,在连成直线即可。那么,先描出哪两点比较好呢选两点应以计算和描点简单为原则,一般来说,当b0时,一般的一次函数y=kx+b的图像,应选取b,0;当b=0时,画正比例函数y=kx的图像,通常取0,0与k221,k两点,个别情况下可以做些变通,例如画函数y=x的图像,可以取0,0与1,两点,33它与两个坐标轴的交点0,b与-也可以取0,0与3,2两点。4直线y=kx+b与坐标轴的交
展开阅读全文