动能定理机械能守恒定律知识点例题(DOC 16页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《动能定理机械能守恒定律知识点例题(DOC 16页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动能定理机械能守恒定律知识点例题DOC 16页 动能 定理 机械能 守恒定律 知识点 例题 DOC 16
- 资源描述:
-
1、实用标准文案动能定理机械能守恒定律知识点例题(精)1.动能、动能定理2.机械能守恒定律【要点扫描】动能动能定理、动能如果个物体能对外做功,我们就说这个物体具有能量物体由于运动而具有的能Ek=mv2,其大小与参照系的选取有关动能是描述物体运动状态的物理量是相对量。二、动能定理做功可以改变物体的能量所有外力对物体做的总功等于物体动能的增量W1W2W3?mvt2?mv021、反映了物体动能的变化与引起变化的原因力对物体所做功之间的因果关系可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小所以正功是加号,负功是减号。2、“增量”是末动能减初动能EK0表示动能增加,EK0表示动
2、能减小3、动能定理适用于单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化在动能定理中总功指各外力对物体做功的代数和这里我们所说的外力包括重力、弹力、摩擦力、电场力等4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求各力做的功,然后求代数和5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式但动能定理是标量式功和动能都是标量,不能利用矢量法则分解故动能定理无分量式在处理些问题时,可在某方向应用动能定理6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的但它也适用于
3、外力为变力及物体作曲线运动的情况即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用7、对动能定理中的位移与速度必须相对同参照物三、由牛顿第二定律与运动学公式推出动能定理设物体的质量为m,在恒力F作用下,通过位移为s,其速度由v0变为vt,则:根据牛顿第二定律F=ma根据运动学公式2as=vt2v02由得:Fs=mvt2mv02四、应用动能定理可解决的问题恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解般比用牛顿定律及运动学公式求解要简单得多用动能定理还能解决些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动的问题等机械能守恒定律、机械能1、由物体间的相互作
4、用和物体间的相对位置决定的能叫做势能如重力势能、弹性势能、分子势能、电势能等(1)物体由于受到重力作用而具有重力势能,表达式为EP=mgh式中h是物体到零重力势能面的高度(2)重力势能是物体与地球系统共有的只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高h处其重力势能为EP=mgh,若物体在零势能参考面下方低h处其重力势能为EP=mgh,“”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同物体在同位置的重力势能的多少也就不同,所以重力势能是相对的通常在不明确指出的情况下,都是以地面为零势面的但应特别注意的是,当物体的位置改变时,其重力势能
5、的变化量与零势面如何选取无关在实际问题中我们更会关心的是重力势能的变化量(3)弹性势能,发生弹性形变的物体而具有的势能高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能2、重力做功与重力势能的关系:重力做功等于重力势能的减少量WG=EP减=EP初EP末,克服重力做功等于重力势能的增加量W克=EP增=EP末EP初应特别注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化3、动能和势能(重力势能与弹性势能)统称为机械能二、机械能守恒定律1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化
6、,但机械能的总量保持不变2、机械能守恒的条件(1)对某物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒(2)对某系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒3、表达形式:EK1Epl=Ek2EP2(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式此表达式中EP是相对的建立方程时必须选择合适的零势能参考面且每状态的EP都应是对同参考面而言的(2)其他表达方式,EP=EK,系统重力势能的增量等于系统动能的减少量(3)Ea=E
7、b,将系统分为a、b两部分,a部分机械能的增量等于另部分b的机械能的减少量,三、判断机械能是否守恒首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则
8、物体系机械能守恒(3)对些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒【规律方法】动能动能定理【例1】如图所示,质量为m的物体与转台之间的摩擦系数为,物体与转轴间距离为R,物体随转台由静止开始转动,当转速增加到某值时,物体开始在转台上滑动,此时转台已开始匀速转动,这过程中摩擦力对物体做功为多少?解析:物体开始滑动时,物体与转台间已达到最大静摩擦力,这里认为就是滑动摩擦力mg根据牛顿第二定律mg=mv2/R由动能定理得:W=?mv2由得:W=?mgR,所以在这过程摩擦力做功为?mgR点评:(1)些变力做功,不能用WFscos求,应当善于用动
9、能定理(2)应用动能定理解题时,在分析过程的基础上无须深究物体的运动状态过程中变化的细节,只须考虑整个过程的功量及过程始末的动能若过程包含了几个运动性质不同的分过程既可分段考虑,也可整个过程考虑但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待求出总功计算时要把各力的功连同符号(正负)同代入公式【例2】质量为m的物体从h高处由静止落下,然后陷入泥土中深度为h后静止,求阻力做功为多少?提示:整个过程动能增量为零,则根据动能定理mg(hh)Wf0所以Wfmg(hh)答案:mg(hh)(一)动能定理应用的基本步骤应用动能定理涉及个过程,两个状态所谓个过程是指做功过程,应明确该过程各外力所做
10、的总功;两个状态是指初末两个状态的动能动能定理应用的基本步骤是:选取研究对象,明确并分析运动过程分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和明确过程始末状态的动能Ek1及EK2列方程W=,必要时注意分析题目的潜在条件,补充方程进行求解【例3】总质量为M的列车沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶了L的距离,于是立即关闭油门,除去牵引力,设阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?解析:此题用动能定理求解比用运动学结合牛顿第二定律求解简单先画出草图如图所示,
11、标明各部分运动位移(要重视画草图);对车头,脱钩前后的全过程,根据动能定理便可解得.FL(Mm)gs1=?(Mm)v02对末节车厢,根据动能定理有mgs2mv02而s=s1s2由于原来列车匀速运动,所以F=Mg以上方程联立解得s=ML/(Mm)说明:对有关两个或两个以上的有相互作用、有相对运动的物体的动力学问题,应用动能定理求解会很方便最基本方法是对每个物体分别应用动能定理列方程,再寻找两物体在受力、运动上的联系,列出方程解方程组(二)应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这过程中物体运动性质、运动轨迹、做功的力
12、是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制(2)般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解可以说,熟练地应用动能定理求解问题,是种高层次的思维和方法,应该增强用动能定理解题的主动意识(3)用动能定理可求变力所做的功在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscos求出变力做功的值,但可由动能定理求解【例4】如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R,当拉力逐渐
13、减小到F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功的大小是: A. B. C. D.零解析:设当绳的拉力为F时,小球做匀速圆周运动的线速度为v1,则有F=mv12/R当绳的拉力减为F/4时,小球做匀速圆周运动的线速度为v2,则有F/4=mv22/2R在绳的拉力由F减为F/4的过程中,绳的拉力所做的功为W=?mv22?mv12=?FR所以,绳的拉力所做的功的大小为FR/4,A选项正确说明:用动能定理求变力功是非常有效且普遍适用的方法【例5】质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提
展开阅读全文