初中的平面几何的知识点汇总情况(一)(DOC 17页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初中的平面几何的知识点汇总情况(一)(DOC 17页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中的平面几何的知识点汇总情况一DOC 17页 初中 平面几何 知识点 汇总 情况 DOC 17
- 资源描述:
-
1、实用标准文案平面几何知识点汇总(一)知识点一 相交线和平行线1.定理与性质对顶角的性质:对顶角相等。2.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。4.平行线的性质:性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。5.平行线的判定:判定1:同位角相等,两直线平行。判定2:内错角相等,两直线平行。判定3:同旁内角相等,两直线平行。知识点二 三
2、角形一、三角形相关概念1三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:三条线段;不在同一直线上;首尾顺次相接2三角形中的三种重要线段 (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高二、三角形三边关系定理三角形两边之和大于第三边,故同时满足ABC三边长a、b、c的不等式有:a+bc,b+ca,c+ab三角形两边之
3、差小于第三边,故同时满足ABC三边长a、b、c的不等式有:ab-c,ba-c,cb-a注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可三、三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性例如起重机的支架采用三角形结构就是这个道理四、三角形的内角结论1:三角形的内角和为180表示: 在ABC中,A+B+C=180结论2:在直角三角形中,两个锐角互余注意:在三角形中,已知两个内角可以求出第三个内角如:在ABC中,C=180(A+B)在三角形中,已知三个内角和的比或它们之间的关系,求各内角如:ABC中,已
4、知A:B:C=2:3:4,求A、B、C的度数五、三角形的外角1意义:三角形一边与另一边的延长线组成的角叫做三角形的外角2性质:三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.三角形的一个外角与与之相邻的内角互补六、多边形多边形的对角线条对角线;n边形的内角和为(n2)180;多边形的外角和为360知识点三 全等三角形一、全等三角形1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。2、全等三角形的性质(1)全等三角形对应边相等;(2)全
5、等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。(SSS)(2)两角和它们的夹边对应相等的两个三角形全等。(ASA)(3)两角和其中一角的对边对应相等的两个三角形全等。(AAS)(4)两边和它们的夹角对应相等的两个三角形全等。(SAS)(5)斜边和一条直角边对应相等的两个直角三角形全等。(HL)4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上二、轴对称图形(一)基本定义1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合
6、的点是对应点,叫做对称点.2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.4.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.等边三角形三条边都相等的三角形叫做等边三角形.(二)性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.(1)点P
7、(x,y)关于x轴对称的点的坐标为P(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.5.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60.(2)等边
8、三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.(三)有关判定1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.三个角都相等的三角形是等边三角形.4.有一个角是60的等腰三角形是等边三角形.知识点四 勾股定理1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2b2c2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有
9、下面关系:a2b2c2,那么这个三角形是直角三角形。2. 勾股数:满足a2b2c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2a2b2,则ABC
10、是以C为直角的三角形;若a2b2c2,则此三角形为钝角三角形(其中c为最大边);若a2b2c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30。5. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。(3)用于证明线段平方关系的问题。(4)利用勾股定理,作出长为的线段6.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法知识点五 四边形
11、 一、基本定义1四边形的内角和与外角和定理:(1)四边形的内角和等于360;(2)四边形的外角和等于360.2多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180;(2)任意多边形的外角和等于360.3平行四边形的性质:因为ABCD是平行四边形4.平行四边形的判定:.5.矩形的性质:因为ABCD是矩形6. 矩形的判定:四边形ABCD是矩形.7菱形的性质:因为ABCD是菱形8菱形的判定:四边形四边形ABCD是菱形.9正方形的性质:因为ABCD是正方形 (1) (2)(3) 10正方形的判定:四边形ABCD是正方形.(4)ABCD是矩形又AD=AB 四边形ABCD是正方形11等腰梯
12、形的性质:因为ABCD是等腰梯形 12等腰梯形的判定:四边形ABCD是等腰梯形 (4)ABCD是梯形且ADBCAC=BDABCD四边形是等腰梯形14三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.二 定理:中心对称的有关定理1关于中心对称的两个图形是全等形.2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式: 1S菱形 =(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)2S平行四边形 =
13、ah. (a为平行四边形的边,h为a上的高)3S梯形 =.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)四 常识:1若n是多边形的边数,则对角线条数公式是:.2如图:平行四边形、矩形、菱形、正方形的从属关系.3梯形中常见的辅助线:知识点六 圆1、圆的定义:()在一个平面内线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,固定的端点叫做圆心,线段叫做半径。()圆是所有点到定点的距离等于定长的点的集合。注意:确定一个圆有个元素,一个是圆心,一个是半径,圆心确定圆的位置,半径确定圆的大小。、和圆相关的概念:()弦:连结圆上任意两点的线段;(弦不一定是直径,直径一定是弦,直径
展开阅读全文