初三《相似三角形》知识点总结(DOC 31页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初三《相似三角形》知识点总结(DOC 31页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似三角形 初三相似三角形知识点总结DOC 31页 初三 相似 三角形 知识点 总结 DOC 31
- 资源描述:
-
1、相似三角形知识点总结 知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。如ABC与A/B/C/相似,记作: ABCA/B/C/ 。相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。注意:(1)相似比是有顺序的。(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。(3)顺序性:相似三角形的相似比是有顺序的,若ABCA/B/C/,相似比为k,则A/B/C/与ABC的相似比是知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。(2)两个等边三角形一定相似,两个等腰三角
2、形不一定相似。(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。知识点3、平行线分线段成比例定理1. 比例线段的有关概念: b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。把线段AB分成两条线段AC和BC,使AC2=ABBC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。 2. 比例性质: 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l1l2l3, A D l1 B E l2 C F l3 可得等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D
3、E B C由DEBC可得:.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. 知识点4:相似三角形的性质 相似三角形的对应角相等 相似三角形的对应边成比例 相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 相似三角形周长的比等于相似比相似三角形面积的比等于相似比的平方 知识点5:相似三角形的判定: 两角对应相
4、等,两个三角形相似 两边对应成比例且夹角相等,两三角形相似 三边对应成比例,两三角形相似 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。点拨:在三角形中,若已知两个角,由三角形内角和定理可求出第三个角。注意公共角的运用,公共角也就是两个三角形都有的角,公共角是隐含的相等的角,我们应注意公共角的运用。两边对应成比例并且它们的
5、夹角也相等的两个三角形相似。注意:这个角必须是两边的夹角,而不能是其他的角,其他的角则不可以识别两个三角形相似,此法类似于判定三角形全等的条件“SAS”三边对应成比例的两个三角形相似。知识点六:摄影定理AD2=BDCD AB2=BDBC AC2=CDBC特殊图形(双垂直模型)BAC=90 AD2=BDCD AB2=BDBC AC2=CDBC知识点七:相似三角形的周长和面积 (1)相似三角形的对应高相等,对应边的比相等。(2)相似三角形对应高的比、对应中线的比、对应角平分线的比等于相似比。(3)相似三角形的周长比等于相似比;(4)相似三角形的面积比等于相似比的平方补充:相似三角形的识别方法(1)
6、定义法:三角对应相等,三边对应成比例的两个三角形相似。(2)平行线法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。注意:适用此方法的基本图形,(简记为A型,X型)(3)三边对应成比例的两个三角形相似。(4)两边对应成比例并且它们的夹角也相等的两个三角形相似。(5)两角对应相等的两个三角形相似。(6)一条直角边和斜边长对应成比例的两个直角三角形相似。(7)被斜边上的高分成的两个直角三角形与原直角三角形相似。相似三角形的基本图形: 判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二
7、对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。相似三角形的应用:求物体的长或宽或高;求有关面积等。经典习题考点一:平行线分线段成比例1、(2013广东肇庆)如图,已知直线abc,直线m、n 与a、b、c分别交于点A、C、E、B、D、F,AC 4,CE 6,BD 3,则BF ( )A 7B 7.5C 8D 8.52、(2013福州)如图,已知ABC,AB=AC=1,A=36,ABC的平分线BD交AC于点D,则AD的长是 ,cosA的值是 (结果保留根号)abcABCDEFmn3、(2011湖南怀化)如图所示:ABC中,DEBC,AD5,BD10,AE3,
8、则CE的值为( )A9B6C3D44(2011山东泰安)如图,点F是ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是( )A B C D 5(2012孝感)如图,在ABC中,AB=AC,A=36,BD平分ABC交AC于点D,若AC=2,则AD的长是()A B C D考点二:相似三角形的性质1、(2013昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N下列结论:APEAME;PM+PN=AC;PE2+PF2=PO2;POFBNF;当PMNAMP
9、时,点P是AB的中点其中正确的结论有()A5个B4个C3个D2个考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质分析:依据正方形的性质以及勾股定理、矩形的判定方法即可判断APM和BPN以及APE、BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断解答:解:四边形ABCD是正方形,BAC=DAC=45在APE和AME中,APEAME,故正确;PE=EM=PM,同理,FP=FN=NP正方形ABCD中ACBD,又PEAC,PFBD,PEO=EOF=PFO=90,且APE中AE=PE四边形PEOF是矩形PF=OE,PE+PF=OA,又PE=EM=PM,FP=FN=
10、NP,OA=AC,PM+PN=AC,故正确;四边形PEOF是矩形,PE=OF,在直角OPF中,OF2+PF2=PO2,PE2+PF2=PO2,故正确BNF是等腰直角三角形,而POF不一定是,故错误;AMP是等腰直角三角形,当PMNAMP时,PMN是等腰直角三角形PM=PN,又AMP和BPN都是等腰直角三角形,AP=BP,即P时AB的中点故正确故选B点评:本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识APM和BPN以及APE、BPF都是等腰直角三角形,四边形PEOF是矩形是关键2、(2013新疆)如图,RtABC中,ACB=90,ABC=60,BC=2cm,D为BC的中点,若动点E以1
11、cm/s的速度从A点出发,沿着ABA的方向运动,设E点的运动时间为t秒(0t6),连接DE,当BDE是直角三角形时,t的值为()A2B2.5或3.5C3.5或4.5D2或3.5或4.5考点:相似三角形的判定与性质;含30度角的直角三角形专题:动点型分析:由RtABC中,ACB=90,ABC=60,BC=2cm,可求得AB的长,由D为BC的中点,可求得BD的长,然后分别从若DBE=90与若EDB=90时,去分析求解即可求得答案解答:解:RtABC中,ACB=90,ABC=60,BC=2cm,AB=2BC=4(cm),BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,BD=BC=1
12、(cm),BE=ABAE=4t(cm),若DBE=90,当AB时,ABC=60,BDE=30,BE=BD=(cm),t=3.5,当BA时,t=4+0.5=4.5若EDB=90时,当AB时,ABC=60,BED=30,BE=2BD=2(cm),t=42=2,当BA时,t=4+2=6(舍去)综上可得:t的值为2或3.5或4.5故选D点评:此题考查了含30角的直角三角形的性质此题属于动点问题,难度适中,注意掌握分类讨论思想与数形结合思想的应用3、(2013内江)如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,SDEF:SABF=4:25,则DE:EC=()A2:5B2:3C
13、3:5D3:2考点:相似三角形的判定与性质;平行四边形的性质分析:先根据平行四边形的性质及相似三角形的判定定理得出DEFBAF,再根据SDEF:SABF=4:10:25即可得出其相似比,由相似三角形的性质即可求出 DE:EC的值,由AB=CD即可得出结论解答:解:四边形ABCD是平行四边形,ABCD,EAB=DEF,AFB=DFE,DEFBAF,SDEF:SABF=4:25,DE:AB=2:5,AB=CD,DE:EC=2:3故选B点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键4、(2013宁夏)ABC中,D
14、、E分别是边AB与AC的中点,BC=4,下面四个结论:DE=2;ADEABC;ADE的面积与ABC的面积之比为 1:4;ADE的周长与ABC的周长之比为 1:4;其中正确的有(只填序号)考点:相似三角形的判定与性质;三角形中位线定理3718684分析:根据题意做出图形,点D、E分别是AB、AC的中点,可得DEBC,DE=BC=2,则可证得ADEABC,由相似三角形面积比等于相似比的平方,证得ADE的面积与ABC的面积之比为 1:4,然后由三角形的周长比等于相似比,证得ADE的周长与ABC的周长之比为 1:2,选出正确的结论即可解答:解:在ABC中,D、E分别是AB、AC的中点,DEBC,DE=
15、BC=2,ADEABC,故正确;ADEABC,=,ADE的面积与ABC的面积之比为 1:4,ADE的周长与ABC的周长之比为 1:2,故正确,错误故答案为:点评:此题考查了相似三角形的判定与性质以及三角形中位线的性质,难度不大,注意掌握数形结合思想的应用,要求同学们掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方5、(2013自贡)如图,在平行四边形ABCD中,AB=6,AD=9,BAD的平分线交BC于E,交DC的延长线于F,BGAE于G,BG=,则EFC的周长为()A11B10C9D8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质3718684分析:判断出ADF是等腰三角
16、形,ABE是等腰三角形,DF的长度,继而得到EC的长度,在RtBGE中求出GE,继而得到AE,求出ABE的周长,根据相似三角形的周长之比等于相似比,可得出EFC的周长解答:解:在ABCD中,AB=CD=6,AD=BC=9,BAD的平分线交BC于点E,BAF=DAF,ABDF,ADBC,BAF=F=DAF,BAE=AEB,AB=BE=6,AD=DF=9,ADF是等腰三角形,ABE是等腰三角形,ADBC,EFC是等腰三角形,且FC=CE,EC=FC=96=3,在ABG中,BGAE,AB=6,BG=4,AG=2,AE=2AG=4,ABE的周长等于16,又CEFBEA,相似比为1:2,CEF的周长为8
17、故选D点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大6、(2013宜昌)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与ABC相似,则点E的坐标不可能是()A(6,0)B(6,3)C(6,5)D(4,2)考点:相似三角形的性质;坐标与图形性质分析:根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断解答:解:ABC中,ABC=90,AB=6,BC=3,AB:BC=2A、当点E的坐标为(6,0)时,CDE=90,CD=2,DE=1,则AB:BC=CD:D
18、E,CDEABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,CDE=90,CD=2,DE=2,则AB:BCCD:DE,CDE与ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,CDE=90,CD=2,DE=4,则AB:BC=DE:CD,EDCABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,ECD=90,CD=2,CE=1,则AB:BC=CD:CE,DCEABC,故本选项不符合题意;故选B点评:本题考查了相似三角形的判定,难度中等牢记判定定理是解题的关键7、(2013雅安)如图,DE是ABC的中位线,延长DE至F使EF=DE,连接CF,则SCEF:S四边形BC
19、ED的值为()A1:3B2:3C1:4D2:5考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理分析:先利用SAS证明ADECFE(SAS),得出SADE=SCFE,再由DE为中位线,判断ADEABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到SADE:SABC=1:4,则SADE:S四边形BCED=1:3,进而得出SCEF:S四边形BCED=1:3解答:解:DE为ABC的中位线,AE=CE在ADE与CFE中,ADECFE(SAS),SADE=SCFEDE为ABC的中位线,ADEABC,且相似比为1:2,SADE:SABC=1:4,SADE+S四边形BCED=
展开阅读全文