新教材-人教A版高中数学选择性必修第一册-第三章-圆锥曲线的方程-知识点考点汇总及解题方法规律提炼(DOC 47页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《新教材-人教A版高中数学选择性必修第一册-第三章-圆锥曲线的方程-知识点考点汇总及解题方法规律提炼(DOC 47页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材-人教A版高中数学选择性必修第一册-第三章-圆锥曲线的方程-知识点考点汇总及解题方法规律提炼DOC 47页 新教材 人教 高中数学 选择性 必修 一册 第三 圆锥曲线 方程 知识点 考点 汇总 下载 _选择性必修 第一册_人教A版(2019)_数学_高中
- 资源描述:
-
1、第三章 圆锥曲线的方程3.1椭圆- 1 -3.1.1椭圆及其标准方程- 1 -3.1.2椭圆的简单几何性质- 7 -3.2双曲线- 20 -3.2.1双曲线及其标准方程- 20 -3.2.2双曲线的简单几何性质- 26 -3.3抛物线- 33 -3.3.1抛物线及其标准方程- 33 -3.3.2抛物线的简单几何性质- 38 -3.1椭圆3.1.1椭圆及其标准方程1椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,焦距的一半称为半焦距2椭圆的标准方程焦点在x轴上焦点在y轴上标准方程1(ab0)1
2、(ab0)焦点(c,0)与(c,0)(0,c)与(0,c)a,b,c的关系c2a2b2求椭圆的标准方程【例1】求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为F1(4,0),F2(4,0),并且椭圆上一点P与两焦点的距离的和等于10;(2)焦点坐标分别为(0,2),(0,2),经过点(4,3);(3)经过两点(2,),.解(1)因为椭圆的焦点在x轴上,且c4,2a10,所以a5,b3,所以椭圆的标准方程为1.(2)因为椭圆的焦点在y轴上,所以可设它的标准方程为1(ab0)法一:由椭圆的定义知2a12,解得a6.又c2,所以b4.所以椭圆的标准方程为1.法二:因为所求椭圆过点(4,3)
3、,所以1.又c2a2b24,可解得a236,b232.所以椭圆的标准方程为1.(3)法一:若焦点在x轴上,设椭圆的标准方程为1(ab0)由已知条件得解得所以所求椭圆的标准方程为1.若焦点在y轴上,设椭圆的标准方程为1(ab0)由已知条件得解得则a2b2,与ab0矛盾,舍去综上可知,所求椭圆的标准方程为1.法二:设椭圆的一般方程为Ax2By21(A0,B0,AB)分别将两点的坐标(2,),代入椭圆的一般方程,得解得所以所求椭圆的标准方程为1.用待定系数法求椭圆标准方程的一般步骤(1)定位置:根据条件判断椭圆的焦点是在x轴上,还是在y轴上,还是两个坐标轴都有可能(2)设方程:根据上述判断设方程1(
4、ab0)或1(ab0)或整式形式mx2ny21(m0,n0,mn)(3)找关系:根据已知条件建立关于a,b,c(或m,n)的方程组(4)得方程:解方程组,将解代入所设方程,写出标准形式即为所求椭圆中的焦点三角形【例2】(1)已知椭圆1的左焦点是F1,右焦点是F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|PF2|()A35B34C53D43(2)已知椭圆1中,点P是椭圆上一点,F1,F2是椭圆的焦点,且PF1F2120,则PF1F2的面积为_思路探究(1)借助PF1的中点在y轴上,且O为F1F2的中点,所以PF2x轴,再用定义和勾股定理解决(2)利用椭圆的定义和余弦定理,建立关
5、于|PF1|,|PF2|的方程,通过解方程求解(1)C(2)(1)依题意知,线段PF1的中点在y轴上,又原点为F1F2的中点,易得y轴PF2,所以PF2x轴,则有|PF1|2|PF2|24c216,又根据椭圆定义知|PF1|PF2|8,所以|PF1|PF2|2,从而|PF1|5,|PF2|3,即|PF1|PF2|53.(2)由1,可知a2,b,所以c1,从而|F1F2|2c2.在PF1F2中,由余弦定理得|PF2|2|PF1|2|F1F2|22|PF1|F1F2|cosPF1F2,即|PF2|2|PF1|242|PF1|.由椭圆定义得|PF1|PF2|2a4.由联立可得|PF1|.所以S|PF
6、1|F1F2|sinPF1F22.椭圆定义在焦点三角形中的应用技巧(1)椭圆的定义具有双向作用,即若|MF1|MF2|2a(2a|F1F2|),则点M的轨迹是椭圆;反之,椭圆上任意一点M到两焦点的距离之和必为2a.(2)涉及焦点三角形面积时,可把|PF1|,|PF2|看作一个整体,运用|PF1|2|PF2|2(|PF1|PF2|)22|PF1|PF2|及余弦定理求出|PF1|PF2|,而无需单独求解1本例(2)中,把“PF1F2120”改为“PF1F290”,求F1PF2的面积解由椭圆方程1,知a2,c1,由椭圆定义,得|PF1|PF2|2a4,且|F1F2|2,在PF1F2中,PF1F290
7、.|PF2|2|PF1|2|F1F2|2.从而(4|PF1|)2|PF1|24,则|PF1|,因此S|F1F2|PF1|.故所求PF1F2的面积为.2本例(2)中方程改为1(ab0),且“PF1F2120”改为“F1PF2120”,若PF1F2的面积为,求b的值解由F1PF2120,PF1F2的面积为,可得|PF1|PF2|sinF1PF2|PF1|PF2|,|PF1|PF2|4.根据椭圆的定义可得|PF1|PF2|2a.再利用余弦定理可得4c2|PF1|2|PF2|22|PF1|PF2|cos 120(|PF1|PF2|)2|PF1|PF2|4a24,b21,即b1.与椭圆有关的轨迹问题探究
8、问题1用定义法求椭圆的方程应注意什么?提示用定义法求椭圆的方程,首先要利用平面几何知识将题目条件转化为到两定点的距离之和为定值,然后判断椭圆的中心是否在原点、对称轴是否为坐标轴,最后由定义确定椭圆的基本量a,b,c.2利用代入法求轨迹方程的步骤是什么?提示(1)设点:设所求轨迹上动点坐标为M(x,y),已知曲线上动点坐标为P(x1,y1)(2)求关系式:用点M的坐标表示出点P的坐标,即得关系式(3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可【例3】(1)已知P是椭圆1上一动点,O为坐标原点,则线段OP中点Q的轨迹方程为_(2)如图所示,圆C:(x1)2y22
9、5及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于点M,求点M的轨迹方程思路探究(1)点Q为OP的中点点Q与点P的坐标关系代入法求解(2)由垂直平分线的性质和椭圆的定义进行求解(1)x21设Q(x,y),P(x0,y0),由点Q是线段OP的中点知x02x,y02y,又1,所以1,即x21.(2)解由垂直平分线的性质可知|MQ|MA|,|CM|MA|CM|MQ|CQ|,|CM|MA|5.点M的轨迹为椭圆,其中2a5,焦点为C(1,0),A(1,0),a,c1 ,b2a2c21.所求点M的轨迹方程为1,即1.1与椭圆有关的轨迹方程的求法常用方法有:直接法、定义法和代入法,本例(1)所用方法
10、为代入法,例(2)所用方法为定义法2对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法3代入法(相关点法)若所求轨迹上的动点P(x,y)与另一个已知曲线C:F(x,y)0上的动点Q(x1,y1)存在着某种联系,可以把点Q的坐标用点P的坐标表示出来,然后代入已知曲线C的方程 F(x,y)0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法)3.1.2椭圆的简单几何性质第1课时椭圆的简单几何性质1椭圆的简单几何性质
11、焦点的位置焦点在x轴上焦点在y轴上图形焦点的位置焦点在x轴上焦点在y轴上标准方程1(ab0)1(ab0)范围axa且bybbxb且aya对称性对称轴为坐标轴,对称中心为原点顶点A1(a,0),A2(a,0)B1(0,b),B2(0,b)A1(0,a),A2(0,a)B1(b,0),B2(b,0)轴长短轴长|B1B2|2b,长轴长|A1A2|2a焦点F1(c,0),F2(c,0)F1(0,c),F2(0,c)焦距|F1F2|2c2.离心率(1)定义:椭圆的焦距与长轴长的比称为椭圆的离心率(2)性质:离心率e的范围是(0,1)当e越接近于1时,椭圆越扁;当e越接近于0时,椭圆就越接近于圆由椭圆方程
12、研究几何性质【例1】(1)椭圆1(ab0)与椭圆(0且1)有()A相同的焦点B相同的顶点C相同的离心率D相同的长、短轴(2)求椭圆9x216y2144的长轴长、短轴长、离心率、焦点坐标和顶点坐标(1)C在两个方程的比较中,端点a、b均取值不同,故A,B,D都不对,而a,b,c虽然均不同,但倍数增长一样,所以比值不变,故应选C.(2)解把已知方程化成标准方程为1,所以a4,b3,c,所以椭圆的长轴长和短轴长分别是2a8和2b6;离心率e;两个焦点坐标分别是(,0),(,0);四个顶点坐标分别是(4,0),(4,0),(0,3),(0,3)1本例(1)中把方程“(0且1)”改为“1(0)”,结果会
13、怎样呢?A由于ab,方程1中,c2(a2)(b2)a2b2.焦点与1(ab0)的焦点完全相同而因长轴长,短轴长发生了变化,所以BCD均不对,只有A正确2本例(2)中,把方程改为“16x29y2144”,结果又会怎样呢?解把方程16x29y2144化为标准形式得1.知椭圆的焦点在y轴上,这里a216,b29,c21697,所以椭圆16x29y2144的长轴长为2a248,短轴长为2b236,离心率:e,焦点坐标:,顶点坐标:(0,4),(0,4),(3,0),(3,0)由标准方程研究性质时的两点注意(1)已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,进而确定椭圆的类
14、型(2)焦点位置不确定的要分类讨论,找准a与b,正确利用a2b2c2求出焦点坐标,再写出顶点坐标同时要注意长轴长、短轴长、焦距不是a,b,c,而应是2a,2b,2c.由几何性质求椭圆的方程【例2】求适合下列条件的椭圆的标准方程:(1)椭圆过点(3,0),离心率e;(2)在x轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为8;(3)经过点M(1,2),且与椭圆1有相同的离心率思路探究(1)焦点位置不确定,分两种情况求解(2)利用直角三角形斜边的中线等于斜边的一半求解(3)法一:先求离心率,根据离心率找到a与b的关系,再用待定系数法求解法二:设与椭圆1有相同离心率的椭圆方程为k1(k10)或k
15、2(k20)解(1)若焦点在x轴上,则a3,e,c,b2a2c2963.椭圆的方程为1.若焦点在y轴上,则b3,e,解得a227.椭圆的方程为1.所求椭圆的方程为1或1.(2)设椭圆方程为1(ab0)如图所示,A1FA2为等腰直角三角形,OF为斜边A1A2的中线(高),且|OF|c,|A1A2|2b,cb4,a2b2c232,故所求椭圆的方程为1.(3)法一:由题意知e21,所以,即a22b2,设所求椭圆的方程为1或1.将点M(1,2)代入椭圆方程得1或1,解得b2或b23.故所求椭圆的方程为1或1.法二:设所求椭圆方程为k1(k10)或k2(k20),将点M的坐标代入可得k1或k2,解得k1
展开阅读全文
链接地址:https://www.163wenku.com/p-5652728.html