书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型数学必修2知识点归纳总结分解(DOC 13页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5652536
  • 上传时间:2023-04-29
  • 格式:DOC
  • 页数:14
  • 大小:1.58MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《数学必修2知识点归纳总结分解(DOC 13页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学必修2知识点归纳总结分解DOC 13页 数学 必修 知识点 归纳 总结 分解 DOC 13 下载 _其他_数学_高中
    资源描述:

    1、必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。1、 空间几何体的三视图和直

    2、观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图;俯视图:光线从几何体的上面向下面正投影得到的投影图。几何体的正视图、侧视图和俯视图统称为几何体的三视图。(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:建立适当直角坐标系(尽可能使更多的点在坐标轴上)建立斜坐

    3、标系,使=450(或1350),注意它们确定的平面表示水平平面;画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y轴,且长度变为原来的一半; 一般地,原图的面积是其直观图面积的倍,即4、空间几何体的表面积与体积圆柱侧面积; 圆锥侧面积:圆台侧面积:体积公式:;球的表面积和体积:.一般地,面积比等于相似比的平方,体积比等于相似比的立方。第二章 点、直线、平面之间的位置关系及其论证1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。2、公理2:过不在一条直线上的三点,有且只有一个平面。 若A,B,C不

    4、共线,则A,B,C确定平面推论1:过直线的直线外一点有且只有一个平面 若,则点A和确定平面推论2:过两条相交直线有且只有一个平面 推论3:过两条平行直线有且只有一个平面 若,则确定平面 若,则确定平面公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.公理4作用:证明两直线平行。5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 作用:该定理也叫等

    5、角定理,可以用来证明空间中的两个角相等。6、线线位置关系:平行、相交、异面。(1)没有任何公共点的两条直线平行 (2)有一个公共点的两条直线相交(3)不同在任何一个平面内的两条直线叫异面直线7、线面位置关系:(1)直线在平面内,直线与平面有无数个公共点;(2)直线和平面平行,直线与平面无任何公共点;(3)直线与平面相交,直线与平面有唯一一个公共点;8、面面位置关系:平行、相交。9、线面平行:(即直线与平面无任何公共点)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。(只需在平面内找一条直线和平面外的直线平行就可以) 证明两直线平行的主要方法是: 三角形中位线定理:三角形

    6、中位线平行并等于底边的一半; 平行四边形的性质:平行四边形两组对边分别平行; 线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行; 平行线的传递性: 面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行; 垂直于同一平面的两直线平行; 直线与平面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;(上面的)10、面面平行:(即两平面无任何公共点) (1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 判定定理的推论: 一个平面内的两条相交直线与另一个

    7、平面上的两条直线分别平行,两平面平行 (2)两平面平行的性质: 性质:如果一个平面与两平行平面都相交,那么它们的交线平行; 性质:平行于同一平面的两平面平行; 性质:夹在两平行平面间的平行线段相等; 性质:两平面平行,一平面上的任一条直线与另一个平面平行 11、线面垂直:定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 判定:一条直线与一个平面内的两条相交直线都垂直, 则该直线与此平面垂直。 性质:垂直于同一个平面的两条直线平行。 性质:垂直于同一直线的两平面平行 12、面面垂直:定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。判定

    8、:一个平面经过另一个平面的一条垂线,则这两个平面垂直。 (只需在一个平面内找到另一个平面的垂线就可证明面面垂直)性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 证明两直线垂直和主要方法:利用勾股定理证明两相交直线垂直; 利用等腰三角形三线合一证明两相交直线垂直;利用线面垂直的定义证明(特别是证明异面直线垂直);利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”,“线斜垂”)利用圆中直径所对的圆周角是直角,此外还有正方形、菱形对角线互相垂直等结论。空间角及空间距离的计算1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在在两异面直线中的一条上取一点,过

    9、该点作另一条直线平行线,2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,为线面角。3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角,二面角的大小指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: 明确构成二面角两个半平面和棱; 明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一找”、“二证”、“三计算”)4. 异面直线间的距离:指夹在两异面直线之间的

    10、公垂线段的长度。如图是两异面直线间的距离求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是三棱锥的一个高。如图在三棱锥中有 (异面直线的公垂线是唯一的,指与两异面直线垂直且相交的直线)5. 点到平面的距离:指该点与它在平面上的射影的连线段的长度。 如图:O为P在平面上的射影,线段OP的长度为点P到平面的距离直线、圆与方程1、直线与圆的位置关系的判定: 几何法(1)相切:圆心到直线的距离; (2)相交:圆心到直线的距离;(3)相离:圆心到直线的距离。 代数法:将直线方程与圆的方程联立组成方程组 (1)若方程有唯一一个解,直与圆相切; (2)若方程有唯两个不等实数个解,直线与圆相交

    11、; (3)若方程有无解,直线与圆相离。注意解决直线与圆位置关系问题时,经常需要设定直线方程,设直线方程的技巧:若直线过轴上的定点则可设直线 若直线过定点为,则一般设直线;若直线过点,则设直线。2、两圆位置关系的判定:设圆心距几何法相离:; 外切:; 相交: 内切:; 内含:.空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。柱、锥、台、球的结

    12、构特征柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线) (3)柱体、锥体、台体的体积公式 (4)球体的表面积和体积公式:V= ; S=必修二综合测试题 一 选择题 1.下列叙述中,正确的是( )(A)因为,所以PQ(B)因为P,Q,所以=PQ(C)因为AB,CAB,DAB,所以CD(D)因为,所以且2.已知点,且,则实数的值是( )(A)-3或4 (B)6或2 (C)3或-4 (D)6或-23.长方体的三个面的面积分别是,则长方体的体积是( )ABCD64.棱长为的正方体内切一球,该球的表面积为 (

    13、 )A、B、2C、3D、5.若直线a与平面不垂直,那么在平面内与直线a垂直的直线( )(A)只有一条 (B)无数条 (C)是平面内的所有直线 (D)不存在 6.已知直线、与平面、,给出下列四个命题:若m ,n ,则mn 若ma ,mb, 则a b若ma ,na ,则mn 若mb ,a b ,则ma 或m a其中假命题是( ) (A) (B) (C) (D) 7.在同一直角坐标系中,表示直线与正确的是( )8.一个空间几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D. 9.已知点、直线过点,且与线段AB相交,则直线的斜率的取值范围是 ( )A、或 B、或 C、 D、10.若直

    14、线与曲线有两个交点,则k的取值范围( )A B C D二填空题:11.如果对任何实数k,直线(3k)x(1-2k)y15k=0都过一个定点A,那么点A的坐标是 12.空间四个点P、A、B、C在同一球面上,PA、PB、PC两两垂直,且PA=PB=PC=a,那么这个球面的面积是 a13已知,则的位置关系为 14如图,一个圆锥形容器的高为,内装一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为(如图),则图中的水面高度为 三解答题:ABCDVM15如图,已知正四棱锥V中,若,求正四棱锥-的体积ABCDA1B1C1D1EF16如图,在正方体ABCDA1B1C1D1中,E、F为棱AD、AB的中点(1)求证:EF平面CB1D1;(2)求证:平面CAA1C1平面CB1D117. 如图,在棱长为的正方体中, (1)作出面与面的交线,判断与线位置关系,并给出证明;(2)证明面; (3)求线到面的距离; (4)若以为坐标原点,分别以所在的直线为轴、轴、轴,建立空间直角坐标系,试写出两点的坐标.- 14 -

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学必修2知识点归纳总结分解(DOC 13页).doc
    链接地址:https://www.163wenku.com/p-5652536.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库