小学奥数-操作找规律-精选练习例题-含答案解析(附知识点拨及考点)(DOC 12页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《小学奥数-操作找规律-精选练习例题-含答案解析(附知识点拨及考点)(DOC 12页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学奥数-操作找规律-精选练习例题-含答案解析附知识点拨及考点DOC 12页 小学 操作 规律 精选 练习 例题 答案 解析 知识 点拨 考点 DOC 12
- 资源描述:
-
1、操作找规律知识点拨知识点说明在奥数中有一类“不讲道理”的题目,我们称之为“简单操作找规律”。有一些对小学生来说很难证明的,但与证明相比,发现却是比较容易的。这也是数学中的一种重要的思想,在以后的数学学习中会有一种先猜后证的解题方法。这类题主要考查孩子们的发现能力。例题精讲模块一,周期规律【例 1】 四个小动物换座位一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号以后它们不停地交换位子第一次上下两排交换第二次 是在第一次交换后再左右两排交换第三次再上下两排交换第四次再左右两排交换这样一直换下去问:第十次交换位子后,小兔坐在第几号位子上?(参看 下图)【考点】操作找规律
2、【难度】2星 【题型】解答【关键词】华杯赛,初赛【解析】 根据题意将小兔座位变化的规律找出来可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每4次交换座位,小兔的座位又转回原处知道了这个规律,答案就不难得到了第十次交换座位后,小兔的座位应该是第2号位子。【答案】第2号【例 2】 在1989后面写一串数字。从第5个数字开始 ,每个数字都是它前面两个数字乘积的个位数字。这样得到一串数字:1 9 8 9 2 8 6 8 8 4 2 那么这串数字中,前2005个数字的和是_。【考点】操作找规律 【难度】2星 【题型】填空【关键词】迎春杯,中年级,初试【解析】 由题意知,这串数字从第5个数字开
3、始,只要后面的连续两个数字与前面的连续两个数字相同,后面的数字将会循环出现。由上图知,从第个数字开始,按循环出现。,前个数字和是。【答案】【例 3】 先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123,则这个整数的数字之和是 。【考点】操作找规律 【难度】2星 【题型】填空【关键词】华杯赛,决赛,第5题,10分【解析】 该整数位6281011235813471123581347从第6位开始,10个一循环,(2006-5) 10=2001,所以,整个整数的数字之和为:6+2+8
4、+1+0+200(1+1+2+3+5+8+1+3+4+7)+1=7018。【答案】【例 4】 有一串数1,1,2,3,5,8,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有_个是5的倍数。【考点】操作找规律 【难度】2星 【题型】填空【关键词】走美杯,初赛,六年级【解析】 由于两个数的和除以5的余数等于这两个数除以5的余数之和再除以5的余数所以这串数除以5的余数分别为:1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,可以发现这串余数中,每20个数为一个循环,且一个循环中,每5个数中第五个数是5的倍数由于,所以前2009个
5、数中,有401个是5的倍数【答案】401个【例 5】 小明按15循环报数,小花按16循环报数,当两个人都报了600个数时,小花报的数字之和比小明报的数字之和多_。【考点】操作找规律 【难度】2星 【题型】填空【关键词】希望杯,四年级,复赛,第4题【解析】 小花一个循环报的数字之和为:,小明一个循环报的数字之和为:,小明一共报了(组),小花一共报了(组),所以小花报的数字之和比小明报的数字之和多:。【答案】【例 6】 已知一列数:5,4,7,1,2,5,4,3,7,1,2,5,4,3,7,1,2,5,4,3,由此可推出第2008个数是_。【考点】操作找规律 【难度】2星 【题型】填空【关键词】希
6、望杯,四年级,复赛,第8题【解析】 观察数列发现,除前两个数字之外,六个数字周期出现,因为,所以第个数是。【答案】【例 7】 50名同学围成一圈做游戏:从某一个同学开始顺时针从1开始依次连续报数,报含有数字7的数(如7,17,71等)或7的倍数的同学击1次掌. 如此进行下去,当报到100时,所有同学共击掌_次.【考点】操作找规律 【难度】2星 【题型】填空【关键词】迎春杯,三年级,初赛【解析】 含有数字或的倍数的数有类:个位为的,有,;十位为的,有,;的倍数有,.其中有包含排除关系,根据容斥原理,中共有()+()个,所以共击掌次.【答案】【例 8】 某班43名同学围成一圈。由班长起从1开始连续
7、报数,谁报到100,谁就表演一个节目;然后再由这个同学起从1开始连续报数,结果第一个表演节目的是小明,第二个演节目的是小强。那么小明和小强之间有_名同学。【考点】操作找规律 【难度】2星 【题型】填空【关键词】迎春杯,中年级,初赛【解析】 有两种情况为:或.。小明和小强之间有同学(名)或。【答案】或【例 9】 二十多位小朋友围成一圈做游戏他们依顺时针顺序从小赵报1开始连续报数,但7的倍数或带有数字7的数都要跳过去不报;报错的人表演一个节目小明是第一个报错的人,当他右边的同学报90时他错报了91如果他第一次报数报的是19,那么这群小朋友共有 人【考点】操作找规律 【难度】2星 【题型】填空【关键
8、词】走美杯,5年级,决赛【解析】 a .“跳过去不报”指一个小朋友报了6,下一个小朋友不报数而是拍手,再下一个小朋友报8。此时,每个人应当轮到的数和上一次轮到的数(报出来或者拍手跳过)之间的差等于总人数。小明本次应当拍手,而不是报出91。所以,总人数是91-19=72的约数,有72,36,24,18,其中是“二十多”的只有24。b. “跳过去不报”指一个小朋友报了6,下一个小朋友直接报8。此时,把所有7的倍数和带有数字7的数去掉之后,剩余的数字排成一列,每个人应当轮到的数和上一次轮到的数在这个数列中的位置号之差等于总人数。从19到90这72个数中,含有数字7的有27,37,47,57,67,7
9、0到79,87,共16个,是7的倍数且不含有数字7的有21,28,35,42,49,56,63,84共8个,所以排除掉之后剩下48个,总人数应当是48的约数,有48,24,16,其中是“二十多”的也只有24。这道题目存在两种不同的理解方式,但是答案却恰好相同,这确实是巧合。【答案】【例 10】 50位同学围成一圈,从某同学开始顺时针报数第一位同学报l,跳过一人第三位同学报2,跳过两人第六位同学报3,这样下去,报到2008为止报2008的同学第一次报的是_【考点】操作找规律 【难度】2星 【题型】填空【关键词】走美杯,初赛,六年级【解析】 将这些学生按报数方向依次编号;1、2、3、49、50、5
10、12008,每一个人的编号不唯一,例如编号为2001、1951101、51的和编号为1的为同一个人,这样第n次报数的人的编号为,报2008的同学的编号为2017036,他的最小编号为36,我们知道36=1+2+3+4+5+6+7+8,所以报2008的同学第一次报8.【答案】【例 11】 如果一个自然数的各位数字中有偶数个偶数,则称之为“希望数”。例如,26,201,533是希望数,8,36,208不是希望数,那么,把所有的希望树从小到大排列,第2010个希望数是_。【考点】操作找规律 【难度】3星 【题型】填空【关键词】希望杯,5年级,复赛,第8题【解析】 在不进位的情况下:希望数+1=非希望
11、数,且非希望数+1=希望数,即希望数与非希望数交替出现,因此从09开始,每10个数中有5个希望数,因此第2010个希望数为。【答案】模块二,递推规律【例 12】 有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2,2,0,5,5,0,5继续依次操作下去问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?【考点】操作找规律 【难度】2星 【题型】填空【解析】 观察操作次数: 开始 第一次 第二次 第三次 总 和: 71013
12、16 易发现每操作一次总和增加3因此操作100次后产生的新数串所有数之和为【答案】【例 13】 对任意两个不同的自然数,将其中较大数换成这两数之差,称为一次变换如对18和42可作这样的连续变换:18,4218,2418,612,66,6直到两数相同为止问:对1234和4321作这样的连续变换最后得到的两个相同的数是 【考点】操作找规律 【难度】2星 【题型】填空【解析】 操作如下:1234,43211234,30871234,18531234,619615,619615,43,43,12,11,1实际上按此法操作最后所得两相同的数为开始两数的最大公约数即1234与4321的最大公约数为1此法也
展开阅读全文