大学数学史考试知识点(DOC 11页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《大学数学史考试知识点(DOC 11页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学数学史考试知识点DOC 11页 大学 数学史 考试 知识点 DOC 11
- 资源描述:
-
1、1、 数学是研究现实世界的空间形式与数量关系的科学。2、 古希腊三大著名的几何问题是:A、 化圆为方,即作一个与给定的圆面积相等的正方形;B、 倍立方体,即求作一个立方体,使其体积等于已知立方体的两倍;C、 三等分角,即分任意角为三等分。3、 九章算术是中国古典数学最重要著作。4、 刘徽的数学成就最突出的是“割圆术”和体积理论。5、 祖冲之圆周率上下限为。6、 数书九章的作者是秦九韶7、 变量数学的第一个里程碑是解析几何的发明。8、 欧拉是史上最多产的数学家。9、 高斯一生至少给出过二次互反律8个不同的证明。10、高斯1801年发表了算术研究后,数论作为现代数学的一个重要分支得到了系统的发展。
2、11、数书九章明确的、系统的叙述了求解一次同余方程组的一般解法。12、非欧几何的发明首先由罗巴切夫斯基发表。13、1900年法国数学家希尔伯特提出23个数学问题。14、1994年英国数学家wilson证明了费马大定理。15、Cantor(康托尔)系统发展了集合论。1、 宋元数学最突出的成就之一是高次方程的数值求解。2、 宋世杰的代表著作是“算学启蒙”和“四元玉鉴”。3、 罗巴切夫斯基最早最系统地发表非欧几何的研究成果。4、 黎曼1854年创立了更广泛的几何是黎曼几何。5、 统一几何理论是德国数学家克莱因。6、 我国数学家陈景润在哥德巴赫猜想中取得世界领先的成果。1世界上第一个把 计算到3.14
3、15926n 3.1415927 的数学家是B.祖冲之2我国元代数学著作四元玉鉴的作者是C.朱世杰3就微分学与积分学的起源而言( A )积分学早于微分学 4在现存的中国古代数学著作中,最早的一部是D.周髀算经 5简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫 欧拉公式 6中国古典数学发展的顶峰时期是D.宋元时期7最早使用“函数”(function)这一术语的数学家是( A莱布尼茨81834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是波尔查诺 9古埃及的数学知识常常记载在A纸草书上 10大数学家欧拉出生于(A ) A.瑞士11首先获得四次方程一般解法
4、的数学家是D.费拉利 12九章算术的“少广”章主要讨论D.开方术 13最早采用位值制记数的国家或民族是 A.美索不达米亚 14希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、完备性、独立性。15在现存的中国古代数学著作中,周髀算经是最早的一部。卷上叙述的关于荣方与陈子的对话,包含了勾股定理 的一般形式。 16二项式展开式的系数图表,在中学课本中称其为_杨辉_三角,而数学史学者常常称它为贾宪三角。 17欧几里得几何原本全书共分13 卷,包括有(5)条公理、(5) 条公设。 18两千年来有关 欧几里得几何原本第五公设 的争议,导致了非欧几何的诞生。 19.阿拉伯数学家花拉子
5、米的代数学第一次给出了 一次和二次 方程的一般解法,并用_几何_方法对这一解法给出了证明。20被称为“现代分析之父”的数学家是(柯西),被称为“数学之王”的数学家是(高斯)。21第一台能做加减运算的机械式计算机是数学家 帕斯卡 于1642 年发明的。 221900年,德国数学家 希尔伯特 在巴黎国际数学家大会上提出了(23) 个尚未解决的数学问题,在整个二十世纪,这些问题一直激发着数学家们浓厚的研究兴趣。 23首先将三次方程一般解法公开的是意大利数学家(卡当),首先获得四次方程一般解法的数学家是(费拉利)。24欧氏几何、罗巴契夫斯基几何都是三维空间中黎曼几何的特例,其中 欧氏几何 对应的情形是
6、曲率恒等于零,罗巴契夫斯基几何 对应的情形是曲率为负常数。 25中国历史上最早叙述勾股定理的著作是 九章算术 ,中国历史上最早完成勾股定理证明的数学家是三国时期的(赵爽)。 1世界上讲述方程最早的著作是A.中国的九章算术 2数学汇编是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为 B.帕波斯 3美索不达米亚是最早采用位值制记数的民族,他们主要用的是 A.六十进制 4“一尺之棰,日取其半,万世不竭”出自我国古代名著 B.墨经 5下列数学著作中不属于“算经十书”的是A.数书九章 6微积分诞生于( C )。 17 世纪 7以“万物皆数”为信条的古希腊数学学派是 D.毕达哥拉斯
7、学派 8最早记载勾股定理的我国古代名著是 A.九章算术 9首先使用符号“0”来表示零的国家或民族是( A )。 A.中国 10在几何原本所建立的几何体系中,“整体大于部分”是 D.公理 11刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率”是 12费马对微积分诞生的贡献主要在于其发明的 C.求极值的方法 13祖冲之的代表作是 C.缀术 14九章算术内容丰富,全书共有(九)章,大约有(246(个问题。 15世界上第一个把 计算到 3.1415926 3.1415927 的数学家是(祖冲之)。 16亚力山大晚期一位重要的数学家是(帕波斯),他唯一的传世之作数学汇编是一部荟萃总结前人成果的典型
8、著作。 17古希腊亚历山大时期的数学家 阿波罗尼兹 在前人工作的基础上创立了相当完美的圆锥曲线理论,其著作 圆锥曲线 代表了希腊演绎几何的最高成就。18发现不可公度量的是古希腊 毕德哥拉斯 学派,该发现导致了数学史上的第一次数学危机。 19我国的数学教育有悠久的历史,(隋唐)代开始在国子寺里设立“算学”,唐至五代 代则在科举考试中开设了数学科目,叫“明算科”。 20几何基础的作者是(希尔伯特),该书所提出的公理系统包括 (五)组公理。 21用“分割法”建立实数理论的数学家是(戴德金),该理论建立于 (19)世纪。 22费马大定理证明的最后一步是英国数学家 (怀尔斯)于 1994 年完成的,他因
9、此于1996 年获得了(沃尔夫)奖。 23“幂势既同,则积不容异”是我国古代数学家(刘徽)首先明确提出的,这一原理在西方文献中被称作(卡瓦列利)原理。 24创造并首先使用“阿拉伯数码”的国家或民族是(印度),而首先使用十进位值制记数的国家或民族则是(中国)。 25哥德巴赫猜想是(德)国数学家哥德巴赫于 18 世纪在给数学家 (欧拉)的一封信中首次提出的。 26阿基米德通常用(平衡)法发现求积公式,然后用(穷竭)法进行严格的证明。 27古希腊的三大著名几何问题是 化圆为方 、 倍立方 和三等分角。 欧几里德几何原本是数学史上第一座理论丰碑原本是数学史上第一座理论丰碑,它最大的功绩是在数学中确立了
10、演绎范式.这种范式要求一门学科中的每个命题必须是在它之前已建立的一些命题的逻辑结论,而所有这样推理的出发点是一些基本定义和被认为是不证自明的基本原理公设或公理。公理化思想不仅对数学,还是后世其他科学的发展均产生了巨大的影响。牛顿、爱因斯坦等在自己的的研究和理论创立中,都借鉴了这种模式,欧氏几何逐步成为一个逻辑结构严谨而完善的几何体系,使数学的公理法基本形成,促进了整个数学的发展。1、 数学史分期(简述)一、数学的起源与早期发展(公元前6世纪前)二、初等数学时期(公元前6世纪前16世纪)(1)、古代希腊数学(公元前6世纪前6世纪)(2)、中世纪东方数学(3世纪15世纪)(3)、欧洲文艺复兴时期(
11、15世纪16世纪)三、近代数学时期(或称变量数学建立时期,17世纪18世纪)四、现代数学时期(1820现在)(1)现代数学酝酿时期(18201870)(2)现代数学形成时期(18701940)(3)现代数学繁荣时期(或称当代数学时期,1950现在)一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系?(P13)1.古埃及的象形数字(公元前3400年左右) 2.古巴比伦的楔形数字(公元前2400年左右)3.中国的甲骨文(公元前1600年左右) 4.希腊阿提卡数字(公元前500年左右)5.中国的算筹码(公元前500年左右)6.印度婆罗门数字(公元前500年左右)7.玛雅数
12、字(?)其中除巴比伦楔形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系四、美索不达米亚人的记数制远胜埃及象形数字之处主要表现在哪些方面? 1.大多数文明普遍采用十进制,但美索不达米亚人却创造了一套以60进制为主的楔形文记数系统。2.美索不达米亚人的记数制远胜埃及象形数字之处,还在于他们巧妙地将位置原理推广应用到整数以为的分数。3.美索不达米亚人还经常利用各种数表来进行计算,使计算更加简捷。2、 试述九章算术数学成就。九章算术的数学成就是丰富和多方面的。一、算术方面(1) 分数四则运算法则。 2、比例算法。3、盈不足术。“盈不足”术是以盈亏类问题为原型,通过两次假设来求繁难问题的解
13、的方法。(二)代数问题九章算术在代数方面的成就是具有世界意义的。(1) 方程术。“方程术”即线性联立方程组的解法。(2) 正负数。九章算术在代数方面的另一项突出贡献是负数的引进。(3) 开方术。给出了开平方和开立方的算法,开创了后来开更高次方和求高次方程数值解之先河。三、几何方面(1)九章算术中的几何问题具有很明显的实际背景。(2)九章算术中给出的所有直线形的面、体积公式都是准确的。(3)九章算术将几何问题算术化和代数化。标志着中国传统数学的知识体系已初步形成,对中国数学的发展的历史作用如同几何原本对西方数学影响一样。29周髀算经(作者,成书年代,主要成就) 答:该书出版于东汉末年和三国时代,
14、但从史上考证应成书于公元前240 年至公元前156 年之间,可能是北汉平侯张苍修订和补写而成;书中记载的数学知识主要有:分数运算、等差数列公式及一次内插公式和勾股定理在中国早期发展的情况。六、算经十书是指哪十书?周髀算经、九章算术、海岛算经、孙子算经、张邱建算经、夏候阳算经、五曹算经五经算经、缀术、缉古算经。3、 微积分的创立经过半个世纪的酝酿阶段,其中最具代表性的工作是?(1) 开普勒与旋转体体积(2) 卡瓦列里不可分量原理(3) 笛卡尔“圆法”(4) 费马求极大值与极小值的方法(5) 罗马“微分三角形”(6) 沃利斯“无穷算术”1.简述微积分的发展。答:大不列颠以泰勒、麦克劳斯、棣莫弗、斯
15、特林继承和发展了牛顿创立的微积分;欧洲大陆以伯努利家族、欧拉、达朗贝尔、拉格朗日为代表继承和发展了莱布尼茨创立的微积分。微积分的发展分为5个方面:(1)积分技术与椭圆积分:包括变量替换、部分分式积分,椭圆积分;(2)微积分向多元函数的推广:包括偏导数和多重积分;(3)无穷级数理论:包括收敛性、调和级数、判别法;(4)函数概念的深化;(5)微积分严格化的尝试:其中主要著作有达朗贝尔的科学、艺术和工艺百科全书,拉格朗日的解析函数论。代表学科:分析学和分析。1、 试述牛顿创立微积分?:牛顿是在笛卡尔的几何学和沃利斯的“无穷算数”的基础上创立微积分理论。1665年11月牛顿建立了“正流数术”;1666
16、年5月牛顿创立了“反流数术”;1666年10月牛顿写了总结性论文流数简论。 牛顿继续研究流数术相继完成了三篇论文分析学、流数法、求积术,并且以极限法作为微积分的基础,牛顿在自然哲学的数学原理一书中最早公开表述微积分学说。2、 试述莱布尼茨创立微积分?通过卡瓦列里、帕斯卡、巴罗等人的著作,了解并开始研究求曲线的切线以及求面积、体积等微积分问题。莱布尼茨创立微积分首先是提出几何问题的思考,尤其是特征三角形的研究。1684年莱布尼茨发表了他的第一篇微分学论文一种求极大与极小值和求切线的新方法,是数学史上第一篇正式发表的微积分文献。1686年莱布尼茨发表了他的第一篇积分学论文深奥的几何与不可分量及无限
17、的分析,初步论述了积分或求积问题与微分或切线问题的互逆关系。他引进的符号体现了积分与微分的“和”与“差”的实质,后来获得普遍接受并沿用至今。26简述莱布尼茨生活在哪个世纪、所在国家及在数学上的主要成就。 答:莱布尼茨于 1646 年出生在德国的莱比锡,其主要数学成就有:从数列的阶差入手发明了微积分;论述了积分与微分的互逆关系;引入积分符号;首次引进 “函数”一词;发明了二进位制,开始构造符号语言,在历史上最早提出了数理逻辑的思想。 28简述阿基米德的生活时代、代表著作以及在数学上的主要成就。 答:A.阿基米德(公元前287前212)出生于西西里岛的叙拉古,早年曾在亚历山大城跟过欧几里得的门生学
18、习,后来虽然离开了亚历山大,但仍与那里的师友保持着密切的联系,他的许多成果都是通过与亚历山大学者的通信而保存下来。阿基米德生活在古希腊亚历山大前期,代表著作有:论球与圆柱,圆的度量,劈锥曲面与回转椭圆体,论螺线,平面图形,数沙器,抛物线图形求积法等,阿基米德的主要成就有:用力学方法求出球体积,抛物或弓形的面积,托球体、抛物或旋转体截体和球缺体积;用穷竭法求出圆面积和一系列曲边形面积与体积;得到 的近似值为22/7。 九、阿波罗尼奥斯最重要的数学成就是什么?阿波罗尼奥斯的贡献涉及几何学和天文学,但他最重要的数学成就是在前人工作的基础上创立了相当完美的圆锥曲线理论。圆锥曲线论就是这方面的系统总结。
19、31.简述刘徽所生活的朝代、代表著作以及在数学上的主要成就。 答:刘徽生活在三国时代;代表著作有九章算术注;主要成就:算术上给出了系统的分数算法、各种比例算法、求最大公约数的方法,代数上有方程术、正负数加减法则的建立和开平方或开立方方法;在几何上有割圆术及徽率。1. 简述伽罗瓦对代数学的贡献。答:法国数学家伽罗瓦的工作原理是在拉格朗日、高斯、柯西、阿贝尔等人的工作启发之下完成的。他在拉格朗日的基础上提出了“置换群”、“子群”、“正规子群”、“极大正规子群”等全新的数学概念。伽罗瓦研究根的排列,实际上建立了置换群。1829-1831年,伽罗瓦发现了代数方程可用根式解的基本定律伽罗瓦基本定律。判断
20、根式可解的充要条件。问题转化为域,建立了子域与子群的对应关系,给出了根式可解得充要条件,开辟了代数学的新纪元。“宋元四大家”有杨辉、秦九韶、李治、朱世杰。“贾宪三角”,在西方文献中则称“帕斯卡三角”。秦九韶的代表著作数书九章。朱世杰代表著作算学启蒙、四元玉鉴。系统阐述开元术的是李治的测圆海镜和益古演段两部著作。五、何谓“祖氏原理”,它在西方文献中称为什么原理?(P87)祖氏原理:幂势既同,则积不容异。祖氏原理在西方文献中称“卡瓦列里原理”。1.简述非欧几何的产生。 答:研究欧几里德平行公社由来已久,19世纪进入研究的活跃时期。克里格尔对平行公理能否有其他公理推出表示怀疑。兰伯特通过替代平行公社
21、而展开无矛盾的几何学著作平行线理论。高斯建立并相信一种逻辑上相容并且可以描述物质空间像欧氏几何一样正确的几何学。. 波约(匈牙利)著绝对空间的几何学,给出了非欧几何。罗巴切夫斯基是俄国数学家,他1826年发表简要论述平行线定理的一个严格证明,1829年完成论几何原理;1835-1838年完成具有完备的平行线理论的新几何原理,1840年完成平行理论的几何研究,他最早发表并捍卫自己的理论,被成为罗巴切夫斯基几何,简称为罗氏几何。2.克莱茵的爱尔朗根纲领。答:各国数学家克莱茵于1872年在爱尔朗根大学发表的数学教授就职演说称之为“爱尔朗根纲领”。“爱尔朗根纲领”阐述里几何学统一的思想:所谓几何学,就
展开阅读全文